/*
===========================================================================
Return to Castle Wolfenstein multiplayer GPL Source Code
Copyright (C) 1999-2010 id Software LLC, a ZeniMax Media company.
This file is part of the Return to Castle Wolfenstein multiplayer GPL Source Code (RTCW MP Source Code).
RTCW MP Source Code is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
RTCW MP Source Code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with RTCW MP Source Code. If not, see .
In addition, the RTCW MP Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the RTCW MP Source Code. If not, please request a copy in writing from id Software at the address below.
If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA.
===========================================================================
*/
/*
* name: tr_image.c
*
* desc:
*
*/
#include "tr_local.h"
/*
* Include file for users of JPEG library.
* You will need to have included system headers that define at least
* the typedefs FILE and size_t before you can include jpeglib.h.
* (stdio.h is sufficient on ANSI-conforming systems.)
* You may also wish to include "jerror.h".
*/
#define JPEG_INTERNALS
#include "../jpeg-6/jpeglib.h"
static void LoadBMP( const char *name, byte **pic, int *width, int *height );
static void LoadTGA( const char *name, byte **pic, int *width, int *height );
static void LoadJPG( const char *name, byte **pic, int *width, int *height );
static byte s_intensitytable[256];
static unsigned char s_gammatable[256];
int gl_filter_min = GL_LINEAR_MIPMAP_NEAREST;
int gl_filter_max = GL_LINEAR;
#define FILE_HASH_SIZE 4096
static image_t* hashTable[FILE_HASH_SIZE];
// Ridah, in order to prevent zone fragmentation, all images will
// be read into this buffer. In order to keep things as fast as possible,
// we'll give it a starting value, which will account for the majority of
// images, but allow it to grow if the buffer isn't big enough
#define R_IMAGE_BUFFER_SIZE ( 512 * 512 * 4 ) // 512 x 512 x 32bit
typedef enum {
BUFFER_IMAGE,
BUFFER_SCALED,
BUFFER_RESAMPLED,
BUFFER_MAX_TYPES
} bufferMemType_t;
int imageBufferSize[BUFFER_MAX_TYPES] = {0,0,0};
void *imageBufferPtr[BUFFER_MAX_TYPES] = {NULL,NULL,NULL};
void *R_GetImageBuffer( int size, bufferMemType_t bufferType ) {
if ( imageBufferSize[bufferType] < R_IMAGE_BUFFER_SIZE && size <= imageBufferSize[bufferType] ) {
imageBufferSize[bufferType] = R_IMAGE_BUFFER_SIZE;
imageBufferPtr[bufferType] = malloc( imageBufferSize[bufferType] );
//DAJ TEST imageBufferPtr[bufferType] = Z_Malloc( imageBufferSize[bufferType] );
}
if ( size > imageBufferSize[bufferType] ) { // it needs to grow
if ( imageBufferPtr[bufferType] ) {
free( imageBufferPtr[bufferType] );
}
//DAJ TEST Z_Free( imageBufferPtr[bufferType] );
imageBufferSize[bufferType] = size;
imageBufferPtr[bufferType] = malloc( imageBufferSize[bufferType] );
//DAJ TEST imageBufferPtr[bufferType] = Z_Malloc( imageBufferSize[bufferType] );
}
return imageBufferPtr[bufferType];
}
void R_FreeImageBuffer( void ) {
int bufferType;
for ( bufferType = 0; bufferType < BUFFER_MAX_TYPES; bufferType++ ) {
if ( !imageBufferPtr[bufferType] ) {
return;
}
free( imageBufferPtr[bufferType] );
//DAJ TEST Z_Free( imageBufferPtr[bufferType] );
imageBufferSize[bufferType] = 0;
imageBufferPtr[bufferType] = NULL;
}
}
/*
** R_GammaCorrect
*/
void R_GammaCorrect( byte *buffer, int bufSize ) {
int i;
for ( i = 0; i < bufSize; i++ ) {
buffer[i] = s_gammatable[buffer[i]];
}
}
typedef struct {
char *name;
int minimize, maximize;
} textureMode_t;
textureMode_t modes[] = {
{"GL_NEAREST", GL_NEAREST, GL_NEAREST},
{"GL_LINEAR", GL_LINEAR, GL_LINEAR},
{"GL_NEAREST_MIPMAP_NEAREST", GL_NEAREST_MIPMAP_NEAREST, GL_NEAREST},
{"GL_LINEAR_MIPMAP_NEAREST", GL_LINEAR_MIPMAP_NEAREST, GL_LINEAR},
{"GL_NEAREST_MIPMAP_LINEAR", GL_NEAREST_MIPMAP_LINEAR, GL_NEAREST},
{"GL_LINEAR_MIPMAP_LINEAR", GL_LINEAR_MIPMAP_LINEAR, GL_LINEAR}
};
/*
================
return a hash value for the filename
================
*/
static long generateHashValue( const char *fname ) {
int i;
long hash;
char letter;
hash = 0;
i = 0;
while ( fname[i] != '\0' ) {
letter = tolower( fname[i] );
if ( letter == '.' ) {
break; // don't include extension
}
if ( letter == '\\' ) {
letter = '/'; // damn path names
}
hash += (long)( letter ) * ( i + 119 );
i++;
}
hash &= ( FILE_HASH_SIZE - 1 );
return hash;
}
/*
===============
GL_TextureMode
===============
*/
void GL_TextureMode( const char *string ) {
int i;
image_t *glt;
for ( i = 0 ; i < 6 ; i++ ) {
if ( !Q_stricmp( modes[i].name, string ) ) {
break;
}
}
// hack to prevent trilinear from being set on voodoo,
// because their driver freaks...
if ( i == 5 && glConfig.hardwareType == GLHW_3DFX_2D3D ) {
ri.Printf( PRINT_ALL, "Refusing to set trilinear on a voodoo.\n" );
i = 3;
}
if ( i == 6 ) {
ri.Printf( PRINT_ALL, "bad filter name\n" );
return;
}
gl_filter_min = modes[i].minimize;
gl_filter_max = modes[i].maximize;
// change all the existing mipmap texture objects
for ( i = 0 ; i < tr.numImages ; i++ ) {
glt = tr.images[ i ];
if ( glt->mipmap ) {
GL_Bind( glt );
qglTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, gl_filter_min );
qglTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gl_filter_max );
}
}
}
/*
===============
R_SumOfUsedImages
===============
*/
int R_SumOfUsedImages( void ) {
int total;
int i, fc = ( tr.frameCount - 1 );
total = 0;
for ( i = 0; i < tr.numImages; i++ ) {
if ( tr.images[i]->frameUsed == fc ) {
total += tr.images[i]->uploadWidth * tr.images[i]->uploadHeight;
}
}
return total;
}
/*
===============
R_ImageList_f
===============
*/
void R_ImageList_f( void ) {
int i;
image_t *image;
int texels;
const char *yesno[] = {
"no ", "yes"
};
ri.Printf( PRINT_ALL, "\n -w-- -h-- -mm- -TMU- -if-- wrap --name-------\n" );
texels = 0;
for ( i = 0 ; i < tr.numImages ; i++ ) {
image = tr.images[ i ];
texels += image->uploadWidth * image->uploadHeight;
ri.Printf( PRINT_ALL, "%4i: %4i %4i %s %d ",
i, image->uploadWidth, image->uploadHeight, yesno[image->mipmap], image->TMU );
switch ( image->internalFormat ) {
case 1:
ri.Printf( PRINT_ALL, "I " );
break;
case 2:
ri.Printf( PRINT_ALL, "IA " );
break;
case 3:
ri.Printf( PRINT_ALL, "RGB " );
break;
case 4:
ri.Printf( PRINT_ALL, "RGBA " );
break;
case GL_RGBA8:
ri.Printf( PRINT_ALL, "RGBA8" );
break;
case GL_RGB8:
ri.Printf( PRINT_ALL, "RGB8" );
break;
case GL_COMPRESSED_RGBA_S3TC_DXT5_EXT:
ri.Printf( PRINT_ALL, "DXT5 " );
break;
case GL_RGB4_S3TC:
ri.Printf( PRINT_ALL, "S3TC4" );
break;
case GL_RGBA4:
ri.Printf( PRINT_ALL, "RGBA4" );
break;
case GL_RGB5:
ri.Printf( PRINT_ALL, "RGB5 " );
break;
default:
ri.Printf( PRINT_ALL, "???? " );
}
switch ( image->wrapClampMode ) {
case GL_REPEAT:
ri.Printf( PRINT_ALL, "rept " );
break;
case GL_CLAMP:
ri.Printf( PRINT_ALL, "clmp " );
break;
default:
ri.Printf( PRINT_ALL, "%4i ", image->wrapClampMode );
break;
}
ri.Printf( PRINT_ALL, " %s\n", image->imgName );
}
ri.Printf( PRINT_ALL, " ---------\n" );
ri.Printf( PRINT_ALL, " %i total texels (not including mipmaps)\n", texels );
ri.Printf( PRINT_ALL, " %i total images\n\n", tr.numImages );
}
//=======================================================================
/*
================
ResampleTexture
Used to resample images in a more general than quartering fashion.
This will only be filtered properly if the resampled size
is greater than half the original size.
If a larger shrinking is needed, use the mipmap function
before or after.
================
*/
static void ResampleTexture( unsigned *in, int inwidth, int inheight, unsigned *out,
int outwidth, int outheight ) {
int i, j;
unsigned *inrow, *inrow2;
unsigned frac, fracstep;
unsigned p1[2048], p2[2048];
byte *pix1, *pix2, *pix3, *pix4;
if ( outwidth > 2048 ) {
ri.Error( ERR_DROP, "ResampleTexture: max width" );
}
fracstep = inwidth * 0x10000 / outwidth;
frac = fracstep >> 2;
for ( i = 0 ; i < outwidth ; i++ ) {
p1[i] = 4 * ( frac >> 16 );
frac += fracstep;
}
frac = 3 * ( fracstep >> 2 );
for ( i = 0 ; i < outwidth ; i++ ) {
p2[i] = 4 * ( frac >> 16 );
frac += fracstep;
}
for ( i = 0 ; i < outheight ; i++, out += outwidth ) {
inrow = in + inwidth * (int)( ( i + 0.25 ) * inheight / outheight );
inrow2 = in + inwidth * (int)( ( i + 0.75 ) * inheight / outheight );
frac = fracstep >> 1;
for ( j = 0 ; j < outwidth ; j++ ) {
pix1 = (byte *)inrow + p1[j];
pix2 = (byte *)inrow + p2[j];
pix3 = (byte *)inrow2 + p1[j];
pix4 = (byte *)inrow2 + p2[j];
( ( byte * )( out + j ) )[0] = ( pix1[0] + pix2[0] + pix3[0] + pix4[0] ) >> 2;
( ( byte * )( out + j ) )[1] = ( pix1[1] + pix2[1] + pix3[1] + pix4[1] ) >> 2;
( ( byte * )( out + j ) )[2] = ( pix1[2] + pix2[2] + pix3[2] + pix4[2] ) >> 2;
( ( byte * )( out + j ) )[3] = ( pix1[3] + pix2[3] + pix3[3] + pix4[3] ) >> 2;
}
}
}
/*
================
R_LightScaleTexture
Scale up the pixel values in a texture to increase the
lighting range
================
*/
void R_LightScaleTexture( unsigned *in, int inwidth, int inheight, qboolean only_gamma ) {
if ( only_gamma ) {
if ( !glConfig.deviceSupportsGamma ) {
int i, c;
byte *p;
p = (byte *)in;
c = inwidth * inheight;
for ( i = 0 ; i < c ; i++, p += 4 )
{
p[0] = s_gammatable[p[0]];
p[1] = s_gammatable[p[1]];
p[2] = s_gammatable[p[2]];
}
}
} else
{
int i, c;
byte *p;
p = (byte *)in;
c = inwidth * inheight;
if ( glConfig.deviceSupportsGamma ) {
for ( i = 0 ; i < c ; i++, p += 4 )
{
p[0] = s_intensitytable[p[0]];
p[1] = s_intensitytable[p[1]];
p[2] = s_intensitytable[p[2]];
}
} else
{
for ( i = 0 ; i < c ; i++, p += 4 )
{
p[0] = s_gammatable[s_intensitytable[p[0]]];
p[1] = s_gammatable[s_intensitytable[p[1]]];
p[2] = s_gammatable[s_intensitytable[p[2]]];
}
}
}
}
/*
================
R_MipMap2
Operates in place, quartering the size of the texture
Proper linear filter
================
*/
static void R_MipMap2( unsigned *in, int inWidth, int inHeight ) {
int i, j, k;
byte *outpix;
int inWidthMask, inHeightMask;
int total;
int outWidth, outHeight;
unsigned *temp;
outWidth = inWidth >> 1;
outHeight = inHeight >> 1;
temp = ri.Hunk_AllocateTempMemory( outWidth * outHeight * 4 );
inWidthMask = inWidth - 1;
inHeightMask = inHeight - 1;
for ( i = 0 ; i < outHeight ; i++ ) {
for ( j = 0 ; j < outWidth ; j++ ) {
outpix = ( byte * )( temp + i * outWidth + j );
for ( k = 0 ; k < 4 ; k++ ) {
total =
1 * ( (byte *)&in[ ( ( i * 2 - 1 ) & inHeightMask ) * inWidth + ( ( j * 2 - 1 ) & inWidthMask ) ] )[k] +
2 * ( (byte *)&in[ ( ( i * 2 - 1 ) & inHeightMask ) * inWidth + ( ( j * 2 ) & inWidthMask ) ] )[k] +
2 * ( (byte *)&in[ ( ( i * 2 - 1 ) & inHeightMask ) * inWidth + ( ( j * 2 + 1 ) & inWidthMask ) ] )[k] +
1 * ( (byte *)&in[ ( ( i * 2 - 1 ) & inHeightMask ) * inWidth + ( ( j * 2 + 2 ) & inWidthMask ) ] )[k] +
2 * ( (byte *)&in[ ( ( i * 2 ) & inHeightMask ) * inWidth + ( ( j * 2 - 1 ) & inWidthMask ) ] )[k] +
4 * ( (byte *)&in[ ( ( i * 2 ) & inHeightMask ) * inWidth + ( ( j * 2 ) & inWidthMask ) ] )[k] +
4 * ( (byte *)&in[ ( ( i * 2 ) & inHeightMask ) * inWidth + ( ( j * 2 + 1 ) & inWidthMask ) ] )[k] +
2 * ( (byte *)&in[ ( ( i * 2 ) & inHeightMask ) * inWidth + ( ( j * 2 + 2 ) & inWidthMask ) ] )[k] +
2 * ( (byte *)&in[ ( ( i * 2 + 1 ) & inHeightMask ) * inWidth + ( ( j * 2 - 1 ) & inWidthMask ) ] )[k] +
4 * ( (byte *)&in[ ( ( i * 2 + 1 ) & inHeightMask ) * inWidth + ( ( j * 2 ) & inWidthMask ) ] )[k] +
4 * ( (byte *)&in[ ( ( i * 2 + 1 ) & inHeightMask ) * inWidth + ( ( j * 2 + 1 ) & inWidthMask ) ] )[k] +
2 * ( (byte *)&in[ ( ( i * 2 + 1 ) & inHeightMask ) * inWidth + ( ( j * 2 + 2 ) & inWidthMask ) ] )[k] +
1 * ( (byte *)&in[ ( ( i * 2 + 2 ) & inHeightMask ) * inWidth + ( ( j * 2 - 1 ) & inWidthMask ) ] )[k] +
2 * ( (byte *)&in[ ( ( i * 2 + 2 ) & inHeightMask ) * inWidth + ( ( j * 2 ) & inWidthMask ) ] )[k] +
2 * ( (byte *)&in[ ( ( i * 2 + 2 ) & inHeightMask ) * inWidth + ( ( j * 2 + 1 ) & inWidthMask ) ] )[k] +
1 * ( (byte *)&in[ ( ( i * 2 + 2 ) & inHeightMask ) * inWidth + ( ( j * 2 + 2 ) & inWidthMask ) ] )[k];
outpix[k] = total / 36;
}
}
}
memcpy( in, temp, outWidth * outHeight * 4 );
ri.Hunk_FreeTempMemory( temp );
}
/*
================
R_MipMap
Operates in place, quartering the size of the texture
================
*/
static void R_MipMap( byte *in, int width, int height ) {
int i, j;
byte *out;
int row;
if ( !r_simpleMipMaps->integer ) {
R_MipMap2( (unsigned *)in, width, height );
return;
}
if ( width == 1 && height == 1 ) {
return;
}
row = width * 4;
out = in;
width >>= 1;
height >>= 1;
if ( width == 0 || height == 0 ) {
width += height; // get largest
for ( i = 0 ; i < width ; i++, out += 4, in += 8 ) {
out[0] = ( in[0] + in[4] ) >> 1;
out[1] = ( in[1] + in[5] ) >> 1;
out[2] = ( in[2] + in[6] ) >> 1;
out[3] = ( in[3] + in[7] ) >> 1;
}
return;
}
for ( i = 0 ; i < height ; i++, in += row ) {
for ( j = 0 ; j < width ; j++, out += 4, in += 8 ) {
out[0] = ( in[0] + in[4] + in[row + 0] + in[row + 4] ) >> 2;
out[1] = ( in[1] + in[5] + in[row + 1] + in[row + 5] ) >> 2;
out[2] = ( in[2] + in[6] + in[row + 2] + in[row + 6] ) >> 2;
out[3] = ( in[3] + in[7] + in[row + 3] + in[row + 7] ) >> 2;
}
}
}
/*
================
R_MipMap
Operates in place, quartering the size of the texture
================
*/
static float R_RMSE( byte *in, int width, int height ) {
int i, j;
float out, rmse, rtemp;
int row;
rmse = 0.0f;
if ( width <= 32 || height <= 32 ) {
return 9999.0f;
}
row = width * 4;
width >>= 1;
height >>= 1;
for ( i = 0 ; i < height ; i++, in += row ) {
for ( j = 0 ; j < width ; j++, out += 4, in += 8 ) {
out = ( in[0] + in[4] + in[row + 0] + in[row + 4] ) >> 2;
rtemp = ( ( fabs( out - in[0] ) + fabs( out - in[4] ) + fabs( out - in[row + 0] ) + fabs( out - in[row + 4] ) ) );
rtemp = rtemp * rtemp;
rmse += rtemp;
out = ( in[1] + in[5] + in[row + 1] + in[row + 5] ) >> 2;
rtemp = ( ( fabs( out - in[1] ) + fabs( out - in[5] ) + fabs( out - in[row + 1] ) + fabs( out - in[row + 5] ) ) );
rtemp = rtemp * rtemp;
rmse += rtemp;
out = ( in[2] + in[6] + in[row + 2] + in[row + 6] ) >> 2;
rtemp = ( ( fabs( out - in[2] ) + fabs( out - in[6] ) + fabs( out - in[row + 2] ) + fabs( out - in[row + 6] ) ) );
rtemp = rtemp * rtemp;
rmse += rtemp;
out = ( in[3] + in[7] + in[row + 3] + in[row + 7] ) >> 2;
rtemp = ( ( fabs( out - in[3] ) + fabs( out - in[7] ) + fabs( out - in[row + 3] ) + fabs( out - in[row + 7] ) ) );
rtemp = rtemp * rtemp;
rmse += rtemp;
}
}
rmse = sqrt( rmse / ( height * width * 4 ) );
return rmse;
}
/*
==================
R_BlendOverTexture
Apply a color blend over a set of pixels
==================
*/
static void R_BlendOverTexture( byte *data, int pixelCount, byte blend[4] ) {
int i;
int inverseAlpha;
int premult[3];
inverseAlpha = 255 - blend[3];
premult[0] = blend[0] * blend[3];
premult[1] = blend[1] * blend[3];
premult[2] = blend[2] * blend[3];
for ( i = 0 ; i < pixelCount ; i++, data += 4 ) {
data[0] = ( data[0] * inverseAlpha + premult[0] ) >> 9;
data[1] = ( data[1] * inverseAlpha + premult[1] ) >> 9;
data[2] = ( data[2] * inverseAlpha + premult[2] ) >> 9;
}
}
byte mipBlendColors[16][4] = {
{0,0,0,0},
{255,0,0,128},
{0,255,0,128},
{0,0,255,128},
{255,0,0,128},
{0,255,0,128},
{0,0,255,128},
{255,0,0,128},
{0,255,0,128},
{0,0,255,128},
{255,0,0,128},
{0,255,0,128},
{0,0,255,128},
{255,0,0,128},
{0,255,0,128},
{0,0,255,128},
};
/*
===============
Upload32
===============
*/
static void Upload32( unsigned *data,
int width, int height,
qboolean mipmap,
qboolean picmip,
qboolean lightMap,
int *format,
int *pUploadWidth, int *pUploadHeight,
qboolean noCompress ) {
int samples;
int scaled_width, scaled_height;
unsigned *scaledBuffer = NULL;
unsigned *resampledBuffer = NULL;
int i, c;
byte *scan;
GLenum internalFormat = GL_RGB;
float rMax = 0, gMax = 0, bMax = 0;
static int rmse_saved = 0;
// do the root mean square error stuff first
if ( r_rmse->value ) {
while ( R_RMSE( (byte *)data, width, height ) < r_rmse->value ) {
rmse_saved += ( height * width * 4 ) - ( ( width >> 1 ) * ( height >> 1 ) * 4 );
resampledBuffer = R_GetImageBuffer( ( width >> 1 ) * ( height >> 1 ) * 4, BUFFER_RESAMPLED );
ResampleTexture( data, width, height, resampledBuffer, width >> 1, height >> 1 );
data = resampledBuffer;
width = width >> 1;
height = height >> 1;
ri.Printf( PRINT_ALL, "r_rmse of %f has saved %dkb\n", r_rmse->value, ( rmse_saved / 1024 ) );
}
}
//
// convert to exact power of 2 sizes
//
for ( scaled_width = 1 ; scaled_width < width ; scaled_width <<= 1 )
;
for ( scaled_height = 1 ; scaled_height < height ; scaled_height <<= 1 )
;
if ( r_roundImagesDown->integer && scaled_width > width ) {
scaled_width >>= 1;
}
if ( r_roundImagesDown->integer && scaled_height > height ) {
scaled_height >>= 1;
}
if ( scaled_width != width || scaled_height != height ) {
//resampledBuffer = ri.Hunk_AllocateTempMemory( scaled_width * scaled_height * 4 );
resampledBuffer = R_GetImageBuffer( scaled_width * scaled_height * 4, BUFFER_RESAMPLED );
ResampleTexture( data, width, height, resampledBuffer, scaled_width, scaled_height );
data = resampledBuffer;
width = scaled_width;
height = scaled_height;
}
//
// perform optional picmip operation
//
if ( picmip ) {
scaled_width >>= r_picmip->integer;
scaled_height >>= r_picmip->integer;
}
//
// clamp to minimum size
//
if ( scaled_width < 1 ) {
scaled_width = 1;
}
if ( scaled_height < 1 ) {
scaled_height = 1;
}
//
// clamp to the current upper OpenGL limit
// scale both axis down equally so we don't have to
// deal with a half mip resampling
//
while ( scaled_width > glConfig.maxTextureSize
|| scaled_height > glConfig.maxTextureSize ) {
scaled_width >>= 1;
scaled_height >>= 1;
}
//scaledBuffer = ri.Hunk_AllocateTempMemory( sizeof( unsigned ) * scaled_width * scaled_height );
scaledBuffer = R_GetImageBuffer( sizeof( unsigned ) * scaled_width * scaled_height, BUFFER_SCALED );
//
// scan the texture for each channel's max values
// and verify if the alpha channel is being used or not
//
c = width * height;
scan = ( (byte *)data );
samples = 3;
if ( !lightMap ) {
for ( i = 0; i < c; i++ )
{
if ( scan[i * 4 + 0] > rMax ) {
rMax = scan[i * 4 + 0];
}
if ( scan[i * 4 + 1] > gMax ) {
gMax = scan[i * 4 + 1];
}
if ( scan[i * 4 + 2] > bMax ) {
bMax = scan[i * 4 + 2];
}
if ( scan[i * 4 + 3] != 255 ) {
samples = 4;
break;
}
}
// select proper internal format
if ( samples == 3 ) {
if ( !noCompress && glConfig.textureCompression == TC_EXT_COMP_S3TC ) {
// TODO: which format is best for which textures?
internalFormat = GL_COMPRESSED_RGBA_S3TC_DXT5_EXT;
} else if ( !noCompress && glConfig.textureCompression == TC_S3TC ) {
internalFormat = GL_RGB4_S3TC;
} else if ( r_texturebits->integer == 16 ) {
internalFormat = GL_RGB5;
} else if ( r_texturebits->integer == 32 ) {
internalFormat = GL_RGB8;
} else
{
internalFormat = 3;
}
} else if ( samples == 4 ) {
if ( !noCompress && glConfig.textureCompression == TC_EXT_COMP_S3TC ) {
// TODO: which format is best for which textures?
internalFormat = GL_COMPRESSED_RGBA_S3TC_DXT5_EXT;
} else if ( r_texturebits->integer == 16 ) {
internalFormat = GL_RGBA4;
} else if ( r_texturebits->integer == 32 ) {
internalFormat = GL_RGBA8;
} else
{
internalFormat = 4;
}
}
} else {
internalFormat = 3;
}
// copy or resample data as appropriate for first MIP level
if ( ( scaled_width == width ) &&
( scaled_height == height ) ) {
if ( !mipmap ) {
qglTexImage2D( GL_TEXTURE_2D, 0, internalFormat, scaled_width, scaled_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, data );
*pUploadWidth = scaled_width;
*pUploadHeight = scaled_height;
*format = internalFormat;
goto done;
}
memcpy( scaledBuffer, data, width * height * 4 );
} else
{
// use the normal mip-mapping function to go down from here
while ( width > scaled_width || height > scaled_height ) {
R_MipMap( (byte *)data, width, height );
width >>= 1;
height >>= 1;
if ( width < 1 ) {
width = 1;
}
if ( height < 1 ) {
height = 1;
}
}
memcpy( scaledBuffer, data, width * height * 4 );
}
R_LightScaleTexture( scaledBuffer, scaled_width, scaled_height, !mipmap );
*pUploadWidth = scaled_width;
*pUploadHeight = scaled_height;
*format = internalFormat;
qglTexImage2D( GL_TEXTURE_2D, 0, internalFormat, scaled_width, scaled_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, scaledBuffer );
if ( mipmap ) {
int miplevel;
miplevel = 0;
while ( scaled_width > 1 || scaled_height > 1 )
{
R_MipMap( (byte *)scaledBuffer, scaled_width, scaled_height );
scaled_width >>= 1;
scaled_height >>= 1;
if ( scaled_width < 1 ) {
scaled_width = 1;
}
if ( scaled_height < 1 ) {
scaled_height = 1;
}
miplevel++;
if ( r_colorMipLevels->integer ) {
R_BlendOverTexture( (byte *)scaledBuffer, scaled_width * scaled_height, mipBlendColors[miplevel] );
}
qglTexImage2D( GL_TEXTURE_2D, miplevel, internalFormat, scaled_width, scaled_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, scaledBuffer );
}
}
done:
if ( mipmap ) {
qglTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, gl_filter_min );
qglTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gl_filter_max );
} else
{
qglTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR );
qglTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
}
GL_CheckErrors();
//if ( scaledBuffer != 0 )
// ri.Hunk_FreeTempMemory( scaledBuffer );
//if ( resampledBuffer != 0 )
// ri.Hunk_FreeTempMemory( resampledBuffer );
}
/*
================
R_CreateImage
This is the only way any image_t are created
================
*/
image_t *R_CreateImage( const char *name, const byte *pic, int width, int height,
qboolean mipmap, qboolean allowPicmip, int glWrapClampMode ) {
image_t *image;
qboolean isLightmap = qfalse;
long hash;
qboolean noCompress = qfalse;
if ( strlen( name ) >= MAX_QPATH ) {
ri.Error( ERR_DROP, "R_CreateImage: \"%s\" is too long\n", name );
}
if ( !strncmp( name, "*lightmap", 9 ) ) {
isLightmap = qtrue;
noCompress = qtrue;
}
if ( !noCompress && strstr( name, "skies" ) ) {
noCompress = qtrue;
}
if ( !noCompress && strstr( name, "weapons" ) ) { // don't compress view weapon skins
noCompress = qtrue;
}
// RF, if the shader hasn't specifically asked for it, don't allow compression
if ( r_ext_compressed_textures->integer == 2 && ( tr.allowCompress != qtrue ) ) {
noCompress = qtrue;
} else if ( r_ext_compressed_textures->integer == 1 && ( tr.allowCompress < 0 ) ) {
noCompress = qtrue;
}
if ( tr.numImages == MAX_DRAWIMAGES ) {
ri.Error( ERR_DROP, "R_CreateImage: MAX_DRAWIMAGES hit\n" );
}
// Ridah
image = tr.images[tr.numImages] = R_CacheImageAlloc( sizeof( image_t ) );
image->texnum = 1024 + tr.numImages;
// Ridah
if ( r_cacheShaders->integer ) {
R_FindFreeTexnum( image );
}
// done.
tr.numImages++;
image->mipmap = mipmap;
image->allowPicmip = allowPicmip;
strcpy( image->imgName, name );
image->width = width;
image->height = height;
image->wrapClampMode = glWrapClampMode;
// lightmaps are always allocated on TMU 1
if ( qglActiveTextureARB && isLightmap ) {
image->TMU = 1;
} else {
image->TMU = 0;
}
if ( qglActiveTextureARB ) {
GL_SelectTexture( image->TMU );
}
GL_Bind( image );
Upload32( (unsigned *)pic,
image->width, image->height,
image->mipmap,
allowPicmip,
isLightmap,
&image->internalFormat,
&image->uploadWidth,
&image->uploadHeight,
noCompress );
qglTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, glWrapClampMode );
qglTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, glWrapClampMode );
qglBindTexture( GL_TEXTURE_2D, 0 );
if ( image->TMU == 1 ) {
GL_SelectTexture( 0 );
}
hash = generateHashValue( name );
image->next = hashTable[hash];
hashTable[hash] = image;
// Ridah
image->hash = hash;
return image;
}
/*
=========================================================
BMP LOADING
=========================================================
*/
typedef struct
{
char id[2];
unsigned long fileSize;
unsigned long reserved0;
unsigned long bitmapDataOffset;
unsigned long bitmapHeaderSize;
unsigned long width;
unsigned long height;
unsigned short planes;
unsigned short bitsPerPixel;
unsigned long compression;
unsigned long bitmapDataSize;
unsigned long hRes;
unsigned long vRes;
unsigned long colors;
unsigned long importantColors;
unsigned char palette[256][4];
} BMPHeader_t;
static void LoadBMP( const char *name, byte **pic, int *width, int *height ) {
int columns, rows, numPixels;
byte *pixbuf;
int row, column;
byte *buf_p;
byte *buffer;
int length;
BMPHeader_t bmpHeader;
byte *bmpRGBA;
*pic = NULL;
//
// load the file
//
length = ri.FS_ReadFile( ( char * ) name, (void **)&buffer );
if ( !buffer ) {
return;
}
buf_p = buffer;
bmpHeader.id[0] = *buf_p++;
bmpHeader.id[1] = *buf_p++;
bmpHeader.fileSize = LittleLong( *( long * ) buf_p );
buf_p += 4;
bmpHeader.reserved0 = LittleLong( *( long * ) buf_p );
buf_p += 4;
bmpHeader.bitmapDataOffset = LittleLong( *( long * ) buf_p );
buf_p += 4;
bmpHeader.bitmapHeaderSize = LittleLong( *( long * ) buf_p );
buf_p += 4;
bmpHeader.width = LittleLong( *( long * ) buf_p );
buf_p += 4;
bmpHeader.height = LittleLong( *( long * ) buf_p );
buf_p += 4;
bmpHeader.planes = LittleShort( *( short * ) buf_p );
buf_p += 2;
bmpHeader.bitsPerPixel = LittleShort( *( short * ) buf_p );
buf_p += 2;
bmpHeader.compression = LittleLong( *( long * ) buf_p );
buf_p += 4;
bmpHeader.bitmapDataSize = LittleLong( *( long * ) buf_p );
buf_p += 4;
bmpHeader.hRes = LittleLong( *( long * ) buf_p );
buf_p += 4;
bmpHeader.vRes = LittleLong( *( long * ) buf_p );
buf_p += 4;
bmpHeader.colors = LittleLong( *( long * ) buf_p );
buf_p += 4;
bmpHeader.importantColors = LittleLong( *( long * ) buf_p );
buf_p += 4;
memcpy( bmpHeader.palette, buf_p, sizeof( bmpHeader.palette ) );
if ( bmpHeader.bitsPerPixel == 8 ) {
buf_p += 1024;
}
if ( bmpHeader.id[0] != 'B' && bmpHeader.id[1] != 'M' ) {
ri.Error( ERR_DROP, "LoadBMP: only Windows-style BMP files supported (%s)\n", name );
}
if ( bmpHeader.fileSize != length ) {
ri.Error( ERR_DROP, "LoadBMP: header size does not match file size (%d vs. %d) (%s)\n", bmpHeader.fileSize, length, name );
}
if ( bmpHeader.compression != 0 ) {
ri.Error( ERR_DROP, "LoadBMP: only uncompressed BMP files supported (%s)\n", name );
}
if ( bmpHeader.bitsPerPixel < 8 ) {
ri.Error( ERR_DROP, "LoadBMP: monochrome and 4-bit BMP files not supported (%s)\n", name );
}
columns = bmpHeader.width;
rows = bmpHeader.height;
if ( rows < 0 ) {
rows = -rows;
}
numPixels = columns * rows;
if ( width ) {
*width = columns;
}
if ( height ) {
*height = rows;
}
bmpRGBA = R_GetImageBuffer( numPixels * 4, BUFFER_IMAGE );
*pic = bmpRGBA;
for ( row = rows - 1; row >= 0; row-- )
{
pixbuf = bmpRGBA + row * columns * 4;
for ( column = 0; column < columns; column++ )
{
unsigned char red, green, blue, alpha;
int palIndex;
unsigned short shortPixel;
switch ( bmpHeader.bitsPerPixel )
{
case 8:
palIndex = *buf_p++;
*pixbuf++ = bmpHeader.palette[palIndex][2];
*pixbuf++ = bmpHeader.palette[palIndex][1];
*pixbuf++ = bmpHeader.palette[palIndex][0];
*pixbuf++ = 0xff;
break;
case 16:
shortPixel = *( unsigned short * ) pixbuf;
pixbuf += 2;
*pixbuf++ = ( shortPixel & ( 31 << 10 ) ) >> 7;
*pixbuf++ = ( shortPixel & ( 31 << 5 ) ) >> 2;
*pixbuf++ = ( shortPixel & ( 31 ) ) << 3;
*pixbuf++ = 0xff;
break;
case 24:
blue = *buf_p++;
green = *buf_p++;
red = *buf_p++;
*pixbuf++ = red;
*pixbuf++ = green;
*pixbuf++ = blue;
*pixbuf++ = 255;
break;
case 32:
blue = *buf_p++;
green = *buf_p++;
red = *buf_p++;
alpha = *buf_p++;
*pixbuf++ = red;
*pixbuf++ = green;
*pixbuf++ = blue;
*pixbuf++ = alpha;
break;
default:
ri.Error( ERR_DROP, "LoadBMP: illegal pixel_size '%d' in file '%s'\n", bmpHeader.bitsPerPixel, name );
break;
}
}
}
ri.FS_FreeFile( buffer );
}
/*
=================================================================
PCX LOADING
=================================================================
*/
/*
==============
LoadPCX
==============
*/
static void LoadPCX( const char *filename, byte **pic, byte **palette, int *width, int *height ) {
byte *raw;
pcx_t *pcx;
int x, y;
int len;
int dataByte, runLength;
byte *out, *pix;
int xmax, ymax;
*pic = NULL;
*palette = NULL;
//
// load the file
//
len = ri.FS_ReadFile( ( char * ) filename, (void **)&raw );
if ( !raw ) {
return;
}
//
// parse the PCX file
//
pcx = (pcx_t *)raw;
raw = &pcx->data;
xmax = LittleShort( pcx->xmax );
ymax = LittleShort( pcx->ymax );
if ( pcx->manufacturer != 0x0a
|| pcx->version != 5
|| pcx->encoding != 1
|| pcx->bits_per_pixel != 8
|| xmax >= 1024
|| ymax >= 1024 ) {
ri.Printf( PRINT_ALL, "Bad pcx file %s (%i x %i) (%i x %i)\n", filename, xmax + 1, ymax + 1, pcx->xmax, pcx->ymax );
return;
}
out = R_GetImageBuffer( ( ymax + 1 ) * ( xmax + 1 ), BUFFER_IMAGE );
*pic = out;
pix = out;
if ( palette ) {
*palette = ri.Z_Malloc( 768 );
memcpy( *palette, (byte *)pcx + len - 768, 768 );
}
if ( width ) {
*width = xmax + 1;
}
if ( height ) {
*height = ymax + 1;
}
// FIXME: use bytes_per_line here?
for ( y = 0 ; y <= ymax ; y++, pix += xmax + 1 )
{
for ( x = 0 ; x <= xmax ; )
{
dataByte = *raw++;
if ( ( dataByte & 0xC0 ) == 0xC0 ) {
runLength = dataByte & 0x3F;
dataByte = *raw++;
} else {
runLength = 1;
}
while ( runLength-- > 0 )
pix[x++] = dataByte;
}
}
if ( raw - (byte *)pcx > len ) {
ri.Printf( PRINT_DEVELOPER, "PCX file %s was malformed", filename );
ri.Free( *pic );
*pic = NULL;
}
ri.FS_FreeFile( pcx );
}
/*
==============
LoadPCX32
==============
*/
static void LoadPCX32( const char *filename, byte **pic, int *width, int *height ) {
byte *palette;
byte *pic8;
int i, c, p;
byte *pic32;
LoadPCX( filename, &pic8, &palette, width, height );
if ( !pic8 ) {
*pic = NULL;
return;
}
c = ( *width ) * ( *height );
pic32 = *pic = R_GetImageBuffer( 4 * c, BUFFER_IMAGE );
for ( i = 0 ; i < c ; i++ ) {
p = pic8[i];
pic32[0] = palette[p * 3];
pic32[1] = palette[p * 3 + 1];
pic32[2] = palette[p * 3 + 2];
pic32[3] = 255;
pic32 += 4;
}
ri.Free( pic8 );
ri.Free( palette );
}
/*
=========================================================
TARGA LOADING
=========================================================
*/
/*
=============
LoadTGA
=============
*/
void LoadTGA( const char *name, byte **pic, int *width, int *height ) {
int columns, rows, numPixels;
byte *pixbuf;
int row, column;
byte *buf_p;
byte *buffer;
TargaHeader targa_header;
byte *targa_rgba;
*pic = NULL;
//
// load the file
//
ri.FS_ReadFile( ( char * ) name, (void **)&buffer );
if ( !buffer ) {
return;
}
buf_p = buffer;
targa_header.id_length = *buf_p++;
targa_header.colormap_type = *buf_p++;
targa_header.image_type = *buf_p++;
targa_header.colormap_index = LittleShort( *(short *)buf_p );
buf_p += 2;
targa_header.colormap_length = LittleShort( *(short *)buf_p );
buf_p += 2;
targa_header.colormap_size = *buf_p++;
targa_header.x_origin = LittleShort( *(short *)buf_p );
buf_p += 2;
targa_header.y_origin = LittleShort( *(short *)buf_p );
buf_p += 2;
targa_header.width = LittleShort( *(short *)buf_p );
buf_p += 2;
targa_header.height = LittleShort( *(short *)buf_p );
buf_p += 2;
targa_header.pixel_size = *buf_p++;
targa_header.attributes = *buf_p++;
if ( targa_header.image_type != 2
&& targa_header.image_type != 10
&& targa_header.image_type != 3 ) {
ri.Error( ERR_DROP, "LoadTGA: Only type 2 (RGB), 3 (gray), and 10 (RGB) TGA images supported\n" );
}
if ( targa_header.colormap_type != 0 ) {
ri.Error( ERR_DROP, "LoadTGA: colormaps not supported\n" );
}
if ( ( targa_header.pixel_size != 32 && targa_header.pixel_size != 24 ) && targa_header.image_type != 3 ) {
ri.Error( ERR_DROP, "LoadTGA: Only 32 or 24 bit images supported (no colormaps)\n" );
}
columns = targa_header.width;
rows = targa_header.height;
numPixels = columns * rows;
if ( width ) {
*width = columns;
}
if ( height ) {
*height = rows;
}
targa_rgba = R_GetImageBuffer( numPixels * 4, BUFFER_IMAGE );
*pic = targa_rgba;
if ( targa_header.id_length != 0 ) {
buf_p += targa_header.id_length; // skip TARGA image comment
}
if ( targa_header.image_type == 2 || targa_header.image_type == 3 ) {
// Uncompressed RGB or gray scale image
for ( row = rows - 1; row >= 0; row-- )
{
pixbuf = targa_rgba + row * columns * 4;
for ( column = 0; column < columns; column++ )
{
unsigned char red,green,blue,alphabyte;
switch ( targa_header.pixel_size )
{
case 8:
blue = *buf_p++;
green = blue;
red = blue;
*pixbuf++ = red;
*pixbuf++ = green;
*pixbuf++ = blue;
*pixbuf++ = 255;
break;
case 24:
blue = *buf_p++;
green = *buf_p++;
red = *buf_p++;
*pixbuf++ = red;
*pixbuf++ = green;
*pixbuf++ = blue;
*pixbuf++ = 255;
break;
case 32:
blue = *buf_p++;
green = *buf_p++;
red = *buf_p++;
alphabyte = *buf_p++;
*pixbuf++ = red;
*pixbuf++ = green;
*pixbuf++ = blue;
*pixbuf++ = alphabyte;
break;
default:
ri.Error( ERR_DROP, "LoadTGA: illegal pixel_size '%d' in file '%s'\n", targa_header.pixel_size, name );
break;
}
}
}
} else if ( targa_header.image_type == 10 ) { // Runlength encoded RGB images
unsigned char red,green,blue,alphabyte,packetHeader,packetSize,j;
red = 0;
green = 0;
blue = 0;
alphabyte = 0xff;
for ( row = rows - 1; row >= 0; row-- ) {
pixbuf = targa_rgba + row * columns * 4;
for ( column = 0; column < columns; ) {
packetHeader = *buf_p++;
packetSize = 1 + ( packetHeader & 0x7f );
if ( packetHeader & 0x80 ) { // run-length packet
switch ( targa_header.pixel_size ) {
case 24:
blue = *buf_p++;
green = *buf_p++;
red = *buf_p++;
alphabyte = 255;
break;
case 32:
blue = *buf_p++;
green = *buf_p++;
red = *buf_p++;
alphabyte = *buf_p++;
break;
default:
ri.Error( ERR_DROP, "LoadTGA: illegal pixel_size '%d' in file '%s'\n", targa_header.pixel_size, name );
break;
}
for ( j = 0; j < packetSize; j++ ) {
*pixbuf++ = red;
*pixbuf++ = green;
*pixbuf++ = blue;
*pixbuf++ = alphabyte;
column++;
if ( column == columns ) { // run spans across rows
column = 0;
if ( row > 0 ) {
row--;
} else {
goto breakOut;
}
pixbuf = targa_rgba + row * columns * 4;
}
}
} else { // non run-length packet
for ( j = 0; j < packetSize; j++ ) {
switch ( targa_header.pixel_size ) {
case 24:
blue = *buf_p++;
green = *buf_p++;
red = *buf_p++;
*pixbuf++ = red;
*pixbuf++ = green;
*pixbuf++ = blue;
*pixbuf++ = 255;
break;
case 32:
blue = *buf_p++;
green = *buf_p++;
red = *buf_p++;
alphabyte = *buf_p++;
*pixbuf++ = red;
*pixbuf++ = green;
*pixbuf++ = blue;
*pixbuf++ = alphabyte;
break;
default:
ri.Error( ERR_DROP, "LoadTGA: illegal pixel_size '%d' in file '%s'\n", targa_header.pixel_size, name );
break;
}
column++;
if ( column == columns ) { // pixel packet run spans across rows
column = 0;
if ( row > 0 ) {
row--;
} else {
goto breakOut;
}
pixbuf = targa_rgba + row * columns * 4;
}
}
}
}
breakOut:;
}
}
ri.FS_FreeFile( buffer );
}
static void LoadJPG( const char *filename, unsigned char **pic, int *width, int *height ) {
/* This struct contains the JPEG decompression parameters and pointers to
* working space (which is allocated as needed by the JPEG library).
*/
struct jpeg_decompress_struct cinfo;
/* We use our private extension JPEG error handler.
* Note that this struct must live as long as the main JPEG parameter
* struct, to avoid dangling-pointer problems.
*/
/* This struct represents a JPEG error handler. It is declared separately
* because applications often want to supply a specialized error handler
* (see the second half of this file for an example). But here we just
* take the easy way out and use the standard error handler, which will
* print a message on stderr and call exit() if compression fails.
* Note that this struct must live as long as the main JPEG parameter
* struct, to avoid dangling-pointer problems.
*/
struct jpeg_error_mgr jerr;
/* More stuff */
JSAMPARRAY buffer; /* Output row buffer */
int row_stride; /* physical row width in output buffer */
unsigned char *out;
byte *fbuffer;
byte *bbuf;
/* In this example we want to open the input file before doing anything else,
* so that the setjmp() error recovery below can assume the file is open.
* VERY IMPORTANT: use "b" option to fopen() if you are on a machine that
* requires it in order to read binary files.
*/
ri.FS_ReadFile( ( char * ) filename, (void **)&fbuffer );
if ( !fbuffer ) {
return;
}
/* Step 1: allocate and initialize JPEG decompression object */
/* We have to set up the error handler first, in case the initialization
* step fails. (Unlikely, but it could happen if you are out of memory.)
* This routine fills in the contents of struct jerr, and returns jerr's
* address which we place into the link field in cinfo.
*/
cinfo.err = jpeg_std_error( &jerr );
/* Now we can initialize the JPEG decompression object. */
jpeg_create_decompress( &cinfo );
/* Step 2: specify data source (eg, a file) */
jpeg_stdio_src( &cinfo, fbuffer );
/* Step 3: read file parameters with jpeg_read_header() */
(void) jpeg_read_header( &cinfo, TRUE );
/* We can ignore the return value from jpeg_read_header since
* (a) suspension is not possible with the stdio data source, and
* (b) we passed TRUE to reject a tables-only JPEG file as an error.
* See libjpeg.doc for more info.
*/
/* Step 4: set parameters for decompression */
/* In this example, we don't need to change any of the defaults set by
* jpeg_read_header(), so we do nothing here.
*/
/* Step 5: Start decompressor */
(void) jpeg_start_decompress( &cinfo );
/* We can ignore the return value since suspension is not possible
* with the stdio data source.
*/
/* We may need to do some setup of our own at this point before reading
* the data. After jpeg_start_decompress() we have the correct scaled
* output image dimensions available, as well as the output colormap
* if we asked for color quantization.
* In this example, we need to make an output work buffer of the right size.
*/
/* JSAMPLEs per row in output buffer */
row_stride = cinfo.output_width * cinfo.output_components;
out = R_GetImageBuffer( cinfo.output_width * cinfo.output_height * cinfo.output_components, BUFFER_IMAGE );
*pic = out;
*width = cinfo.output_width;
*height = cinfo.output_height;
/* Step 6: while (scan lines remain to be read) */
/* jpeg_read_scanlines(...); */
/* Here we use the library's state variable cinfo.output_scanline as the
* loop counter, so that we don't have to keep track ourselves.
*/
while ( cinfo.output_scanline < cinfo.output_height ) {
/* jpeg_read_scanlines expects an array of pointers to scanlines.
* Here the array is only one element long, but you could ask for
* more than one scanline at a time if that's more convenient.
*/
bbuf = ( ( out + ( row_stride * cinfo.output_scanline ) ) );
buffer = &bbuf;
(void) jpeg_read_scanlines( &cinfo, buffer, 1 );
}
// clear all the alphas to 255
{
int i, j;
byte *buf;
buf = *pic;
j = cinfo.output_width * cinfo.output_height * 4;
for ( i = 3 ; i < j ; i += 4 ) {
buf[i] = 255;
}
}
/* Step 7: Finish decompression */
(void) jpeg_finish_decompress( &cinfo );
/* We can ignore the return value since suspension is not possible
* with the stdio data source.
*/
/* Step 8: Release JPEG decompression object */
/* This is an important step since it will release a good deal of memory. */
jpeg_destroy_decompress( &cinfo );
/* After finish_decompress, we can close the input file.
* Here we postpone it until after no more JPEG errors are possible,
* so as to simplify the setjmp error logic above. (Actually, I don't
* think that jpeg_destroy can do an error exit, but why assume anything...)
*/
ri.FS_FreeFile( fbuffer );
/* At this point you may want to check to see whether any corrupt-data
* warnings occurred (test whether jerr.pub.num_warnings is nonzero).
*/
/* And we're done! */
}
/* Expanded data destination object for stdio output */
typedef struct {
struct jpeg_destination_mgr pub; /* public fields */
byte* outfile; /* target stream */
int size;
} my_destination_mgr;
typedef my_destination_mgr * my_dest_ptr;
/*
* Initialize destination --- called by jpeg_start_compress
* before any data is actually written.
*/
void init_destination( j_compress_ptr cinfo ) {
my_dest_ptr dest = (my_dest_ptr) cinfo->dest;
dest->pub.next_output_byte = dest->outfile;
dest->pub.free_in_buffer = dest->size;
}
/*
* Empty the output buffer --- called whenever buffer fills up.
*
* In typical applications, this should write the entire output buffer
* (ignoring the current state of next_output_byte & free_in_buffer),
* reset the pointer & count to the start of the buffer, and return TRUE
* indicating that the buffer has been dumped.
*
* In applications that need to be able to suspend compression due to output
* overrun, a FALSE return indicates that the buffer cannot be emptied now.
* In this situation, the compressor will return to its caller (possibly with
* an indication that it has not accepted all the supplied scanlines). The
* application should resume compression after it has made more room in the
* output buffer. Note that there are substantial restrictions on the use of
* suspension --- see the documentation.
*
* When suspending, the compressor will back up to a convenient restart point
* (typically the start of the current MCU). next_output_byte & free_in_buffer
* indicate where the restart point will be if the current call returns FALSE.
* Data beyond this point will be regenerated after resumption, so do not
* write it out when emptying the buffer externally.
*/
boolean empty_output_buffer( j_compress_ptr cinfo ) {
return TRUE;
}
/*
* Compression initialization.
* Before calling this, all parameters and a data destination must be set up.
*
* We require a write_all_tables parameter as a failsafe check when writing
* multiple datastreams from the same compression object. Since prior runs
* will have left all the tables marked sent_table=TRUE, a subsequent run
* would emit an abbreviated stream (no tables) by default. This may be what
* is wanted, but for safety's sake it should not be the default behavior:
* programmers should have to make a deliberate choice to emit abbreviated
* images. Therefore the documentation and examples should encourage people
* to pass write_all_tables=TRUE; then it will take active thought to do the
* wrong thing.
*/
GLOBAL void
jpeg_start_compress( j_compress_ptr cinfo, boolean write_all_tables ) {
if ( cinfo->global_state != CSTATE_START ) {
ERREXIT1( cinfo, JERR_BAD_STATE, cinfo->global_state );
}
if ( write_all_tables ) {
jpeg_suppress_tables( cinfo, FALSE ); /* mark all tables to be written */
}
/* (Re)initialize error mgr and destination modules */
( *cinfo->err->reset_error_mgr )( (j_common_ptr) cinfo );
( *cinfo->dest->init_destination )( cinfo );
/* Perform master selection of active modules */
jinit_compress_master( cinfo );
/* Set up for the first pass */
( *cinfo->master->prepare_for_pass )( cinfo );
/* Ready for application to drive first pass through jpeg_write_scanlines
* or jpeg_write_raw_data.
*/
cinfo->next_scanline = 0;
cinfo->global_state = ( cinfo->raw_data_in ? CSTATE_RAW_OK : CSTATE_SCANNING );
}
/*
* Write some scanlines of data to the JPEG compressor.
*
* The return value will be the number of lines actually written.
* This should be less than the supplied num_lines only in case that
* the data destination module has requested suspension of the compressor,
* or if more than image_height scanlines are passed in.
*
* Note: we warn about excess calls to jpeg_write_scanlines() since
* this likely signals an application programmer error. However,
* excess scanlines passed in the last valid call are *silently* ignored,
* so that the application need not adjust num_lines for end-of-image
* when using a multiple-scanline buffer.
*/
GLOBAL JDIMENSION
jpeg_write_scanlines( j_compress_ptr cinfo, JSAMPARRAY scanlines,
JDIMENSION num_lines ) {
JDIMENSION row_ctr, rows_left;
if ( cinfo->global_state != CSTATE_SCANNING ) {
ERREXIT1( cinfo, JERR_BAD_STATE, cinfo->global_state );
}
if ( cinfo->next_scanline >= cinfo->image_height ) {
WARNMS( cinfo, JWRN_TOO_MUCH_DATA );
}
/* Call progress monitor hook if present */
if ( cinfo->progress != NULL ) {
cinfo->progress->pass_counter = (long) cinfo->next_scanline;
cinfo->progress->pass_limit = (long) cinfo->image_height;
( *cinfo->progress->progress_monitor )( (j_common_ptr) cinfo );
}
/* Give master control module another chance if this is first call to
* jpeg_write_scanlines. This lets output of the frame/scan headers be
* delayed so that application can write COM, etc, markers between
* jpeg_start_compress and jpeg_write_scanlines.
*/
if ( cinfo->master->call_pass_startup ) {
( *cinfo->master->pass_startup )( cinfo );
}
/* Ignore any extra scanlines at bottom of image. */
rows_left = cinfo->image_height - cinfo->next_scanline;
if ( num_lines > rows_left ) {
num_lines = rows_left;
}
row_ctr = 0;
( *cinfo->main->process_data )( cinfo, scanlines, &row_ctr, num_lines );
cinfo->next_scanline += row_ctr;
return row_ctr;
}
/*
* Terminate destination --- called by jpeg_finish_compress
* after all data has been written. Usually needs to flush buffer.
*
* NB: *not* called by jpeg_abort or jpeg_destroy; surrounding
* application must deal with any cleanup that should happen even
* for error exit.
*/
static int hackSize;
void term_destination( j_compress_ptr cinfo ) {
my_dest_ptr dest = (my_dest_ptr) cinfo->dest;
size_t datacount = dest->size - dest->pub.free_in_buffer;
hackSize = datacount;
}
/*
* Prepare for output to a stdio stream.
* The caller must have already opened the stream, and is responsible
* for closing it after finishing compression.
*/
void jpegDest( j_compress_ptr cinfo, byte* outfile, int size ) {
my_dest_ptr dest;
/* The destination object is made permanent so that multiple JPEG images
* can be written to the same file without re-executing jpeg_stdio_dest.
* This makes it dangerous to use this manager and a different destination
* manager serially with the same JPEG object, because their private object
* sizes may be different. Caveat programmer.
*/
if ( cinfo->dest == NULL ) { /* first time for this JPEG object? */
cinfo->dest = (struct jpeg_destination_mgr *)
( *cinfo->mem->alloc_small ) ( (j_common_ptr) cinfo, JPOOL_PERMANENT,
sizeof( my_destination_mgr ) );
}
dest = (my_dest_ptr) cinfo->dest;
dest->pub.init_destination = init_destination;
dest->pub.empty_output_buffer = empty_output_buffer;
dest->pub.term_destination = term_destination;
dest->outfile = outfile;
dest->size = size;
}
void SaveJPG( char * filename, int quality, int image_width, int image_height, unsigned char *image_buffer ) {
/* This struct contains the JPEG compression parameters and pointers to
* working space (which is allocated as needed by the JPEG library).
* It is possible to have several such structures, representing multiple
* compression/decompression processes, in existence at once. We refer
* to any one struct (and its associated working data) as a "JPEG object".
*/
struct jpeg_compress_struct cinfo;
/* This struct represents a JPEG error handler. It is declared separately
* because applications often want to supply a specialized error handler
* (see the second half of this file for an example). But here we just
* take the easy way out and use the standard error handler, which will
* print a message on stderr and call exit() if compression fails.
* Note that this struct must live as long as the main JPEG parameter
* struct, to avoid dangling-pointer problems.
*/
struct jpeg_error_mgr jerr;
/* More stuff */
JSAMPROW row_pointer[1]; /* pointer to JSAMPLE row[s] */
int row_stride; /* physical row width in image buffer */
unsigned char *out;
/* Step 1: allocate and initialize JPEG compression object */
/* We have to set up the error handler first, in case the initialization
* step fails. (Unlikely, but it could happen if you are out of memory.)
* This routine fills in the contents of struct jerr, and returns jerr's
* address which we place into the link field in cinfo.
*/
cinfo.err = jpeg_std_error( &jerr );
/* Now we can initialize the JPEG compression object. */
jpeg_create_compress( &cinfo );
/* Step 2: specify data destination (eg, a file) */
/* Note: steps 2 and 3 can be done in either order. */
/* Here we use the library-supplied code to send compressed data to a
* stdio stream. You can also write your own code to do something else.
* VERY IMPORTANT: use "b" option to fopen() if you are on a machine that
* requires it in order to write binary files.
*/
out = ri.Hunk_AllocateTempMemory( image_width * image_height * 4 );
jpegDest( &cinfo, out, image_width * image_height * 4 );
/* Step 3: set parameters for compression */
/* First we supply a description of the input image.
* Four fields of the cinfo struct must be filled in:
*/
cinfo.image_width = image_width; /* image width and height, in pixels */
cinfo.image_height = image_height;
cinfo.input_components = 4; /* # of color components per pixel */
cinfo.in_color_space = JCS_RGB; /* colorspace of input image */
/* Now use the library's routine to set default compression parameters.
* (You must set at least cinfo.in_color_space before calling this,
* since the defaults depend on the source color space.)
*/
jpeg_set_defaults( &cinfo );
/* Now you can set any non-default parameters you wish to.
* Here we just illustrate the use of quality (quantization table) scaling:
*/
jpeg_set_quality( &cinfo, quality, TRUE /* limit to baseline-JPEG values */ );
/* Step 4: Start compressor */
/* TRUE ensures that we will write a complete interchange-JPEG file.
* Pass TRUE unless you are very sure of what you're doing.
*/
jpeg_start_compress( &cinfo, TRUE );
/* Step 5: while (scan lines remain to be written) */
/* jpeg_write_scanlines(...); */
/* Here we use the library's state variable cinfo.next_scanline as the
* loop counter, so that we don't have to keep track ourselves.
* To keep things simple, we pass one scanline per call; you can pass
* more if you wish, though.
*/
row_stride = image_width * 4; /* JSAMPLEs per row in image_buffer */
while ( cinfo.next_scanline < cinfo.image_height ) {
/* jpeg_write_scanlines expects an array of pointers to scanlines.
* Here the array is only one element long, but you could pass
* more than one scanline at a time if that's more convenient.
*/
row_pointer[0] = &image_buffer[( ( cinfo.image_height - 1 ) * row_stride ) - cinfo.next_scanline * row_stride];
(void) jpeg_write_scanlines( &cinfo, row_pointer, 1 );
}
/* Step 6: Finish compression */
jpeg_finish_compress( &cinfo );
/* After finish_compress, we can close the output file. */
ri.FS_WriteFile( filename, out, hackSize );
ri.Hunk_FreeTempMemory( out );
/* Step 7: release JPEG compression object */
/* This is an important step since it will release a good deal of memory. */
jpeg_destroy_compress( &cinfo );
/* And we're done! */
}
//===================================================================
/*
=================
R_LoadImage
Loads any of the supported image types into a cannonical
32 bit format.
=================
*/
void R_LoadImage( const char *name, byte **pic, int *width, int *height ) {
int len;
*pic = NULL;
*width = 0;
*height = 0;
len = strlen( name );
if ( len < 5 ) {
return;
}
if ( !Q_stricmp( name + len - 4, ".tga" ) ) {
LoadTGA( name, pic, width, height ); // try tga first
if ( !*pic ) {
char altname[MAX_QPATH]; // try jpg in place of tga
strcpy( altname, name );
len = strlen( altname );
altname[len - 3] = 'j';
altname[len - 2] = 'p';
altname[len - 1] = 'g';
LoadJPG( altname, pic, width, height );
}
} else if ( !Q_stricmp( name + len - 4, ".pcx" ) ) {
LoadPCX32( name, pic, width, height );
} else if ( !Q_stricmp( name + len - 4, ".bmp" ) ) {
LoadBMP( name, pic, width, height );
} else if ( !Q_stricmp( name + len - 4, ".jpg" ) ) {
LoadJPG( name, pic, width, height );
}
}
/*
===============
R_FindImageFile
Finds or loads the given image.
Returns NULL if it fails, not a default image.
==============
*/
image_t *R_FindImageFile( const char *name, qboolean mipmap, qboolean allowPicmip, int glWrapClampMode ) {
image_t *image;
int width, height;
byte *pic;
long hash;
if ( !name ) {
return NULL;
}
hash = generateHashValue( name );
// Ridah, caching
if ( r_cacheGathering->integer ) {
ri.Cmd_ExecuteText( EXEC_NOW, va( "cache_usedfile image %s %i %i %i\n", name, mipmap, allowPicmip, glWrapClampMode ) );
}
//
// see if the image is already loaded
//
for ( image = hashTable[hash]; image; image = image->next ) {
if ( !strcmp( name, image->imgName ) ) {
// the white image can be used with any set of parms, but other mismatches are errors
if ( strcmp( name, "*white" ) ) {
if ( image->mipmap != mipmap ) {
ri.Printf( PRINT_DEVELOPER, "WARNING: reused image %s with mixed mipmap parm\n", name );
}
if ( image->allowPicmip != allowPicmip ) {
ri.Printf( PRINT_DEVELOPER, "WARNING: reused image %s with mixed allowPicmip parm\n", name );
}
if ( image->wrapClampMode != glWrapClampMode ) {
ri.Printf( PRINT_ALL, "WARNING: reused image %s with mixed glWrapClampMode parm\n", name );
}
}
return image;
}
}
// Ridah, check the cache
// TTimo: assignment used as truth value
if ( ( image = R_FindCachedImage( name, hash ) ) ) {
return image;
}
// done.
//
// load the pic from disk
//
R_LoadImage( name, &pic, &width, &height );
if ( pic == NULL ) { // if we dont get a successful load
// TTimo: Duane changed to _DEBUG in all cases
// I'd still want that code in the release builds on linux
// (possibly for mod authors)
// /me maintained off for win32, using otherwise but printing diagnostics as developer
#if !defined( _WIN32 )
char altname[MAX_QPATH]; // copy the name
int len; //
strcpy( altname, name ); //
len = strlen( altname ); //
altname[len - 3] = toupper( altname[len - 3] ); // and try upper case extension for unix systems
altname[len - 2] = toupper( altname[len - 2] ); //
altname[len - 1] = toupper( altname[len - 1] ); //
ri.Printf( PRINT_DEVELOPER, "trying %s...", altname ); //
R_LoadImage( altname, &pic, &width, &height ); //
if ( pic == NULL ) { // if that fails
ri.Printf( PRINT_DEVELOPER, "no\n" ); //
return NULL; // bail
} //
ri.Printf( PRINT_DEVELOPER, "yes\n" ); //
#else
return NULL;
#endif
}
image = R_CreateImage( ( char * ) name, pic, width, height, mipmap, allowPicmip, glWrapClampMode );
//ri.Free( pic );
return image;
}
/*
================
R_CreateDlightImage
================
*/
#define DLIGHT_SIZE 16
static void R_CreateDlightImage( void ) {
int x,y;
byte data[DLIGHT_SIZE][DLIGHT_SIZE][4];
int b;
// make a centered inverse-square falloff blob for dynamic lighting
for ( x = 0 ; x < DLIGHT_SIZE ; x++ ) {
for ( y = 0 ; y < DLIGHT_SIZE ; y++ ) {
float d;
d = ( DLIGHT_SIZE / 2 - 0.5f - x ) * ( DLIGHT_SIZE / 2 - 0.5f - x ) +
( DLIGHT_SIZE / 2 - 0.5f - y ) * ( DLIGHT_SIZE / 2 - 0.5f - y );
b = 4000 / d;
if ( b > 255 ) {
b = 255;
} else if ( b < 75 ) {
b = 0;
}
data[y][x][0] =
data[y][x][1] =
data[y][x][2] = b;
data[y][x][3] = 255;
}
}
tr.dlightImage = R_CreateImage( "*dlight", (byte *)data, DLIGHT_SIZE, DLIGHT_SIZE, qfalse, qfalse, GL_CLAMP );
}
/*
=================
R_InitFogTable
=================
*/
void R_InitFogTable( void ) {
int i;
float d;
float exp;
exp = 0.5;
for ( i = 0 ; i < FOG_TABLE_SIZE ; i++ ) {
d = pow( (float)i / ( FOG_TABLE_SIZE - 1 ), exp );
tr.fogTable[i] = d;
}
}
/*
================
R_FogFactor
Returns a 0.0 to 1.0 fog density value
This is called for each texel of the fog texture on startup
and for each vertex of transparent shaders in fog dynamically
================
*/
float R_FogFactor( float s, float t ) {
float d;
s -= 1.0 / 512;
if ( s < 0 ) {
return 0;
}
if ( t < 1.0 / 32 ) {
return 0;
}
if ( t < 31.0 / 32 ) {
s *= ( t - 1.0f / 32.0f ) / ( 30.0f / 32.0f );
}
// we need to leave a lot of clamp range
s *= 8;
if ( s > 1.0 ) {
s = 1.0;
}
d = tr.fogTable[ (int)( s * ( FOG_TABLE_SIZE - 1 ) ) ];
return d;
}
/*
================
R_CreateFogImage
================
*/
#define FOG_S 256
#define FOG_T 32
static void R_CreateFogImage( void ) {
int x,y;
byte *data;
float g;
float d;
float borderColor[4];
data = ri.Hunk_AllocateTempMemory( FOG_S * FOG_T * 4 );
g = 2.0;
// S is distance, T is depth
for ( x = 0 ; x < FOG_S ; x++ ) {
for ( y = 0 ; y < FOG_T ; y++ ) {
d = R_FogFactor( ( x + 0.5f ) / FOG_S, ( y + 0.5f ) / FOG_T );
data[( y * FOG_S + x ) * 4 + 0] =
data[( y * FOG_S + x ) * 4 + 1] =
data[( y * FOG_S + x ) * 4 + 2] = 255;
data[( y * FOG_S + x ) * 4 + 3] = 255 * d;
}
}
// standard openGL clamping doesn't really do what we want -- it includes
// the border color at the edges. OpenGL 1.2 has clamp-to-edge, which does
// what we want.
tr.fogImage = R_CreateImage( "*fog", (byte *)data, FOG_S, FOG_T, qfalse, qfalse, GL_CLAMP );
ri.Hunk_FreeTempMemory( data );
borderColor[0] = 1.0;
borderColor[1] = 1.0;
borderColor[2] = 1.0;
borderColor[3] = 1;
qglTexParameterfv( GL_TEXTURE_2D, GL_TEXTURE_BORDER_COLOR, borderColor );
}
/*
==================
R_CreateDefaultImage
==================
*/
#define DEFAULT_SIZE 16
static void R_CreateDefaultImage( void ) {
int x;
byte data[DEFAULT_SIZE][DEFAULT_SIZE][4];
// the default image will be a box, to allow you to see the mapping coordinates
memset( data, 32, sizeof( data ) );
for ( x = 0 ; x < DEFAULT_SIZE ; x++ ) {
data[0][x][0] =
data[0][x][1] =
data[0][x][2] = 0; //----(SA) to make the default grid noticable but not blinding
data[0][x][3] = 255;
data[x][0][0] =
data[x][0][1] =
data[x][0][2] = 0; //----(SA) to make the default grid noticable but not blinding
data[x][0][3] = 255;
data[DEFAULT_SIZE - 1][x][0] =
data[DEFAULT_SIZE - 1][x][1] =
data[DEFAULT_SIZE - 1][x][2] = 0; //----(SA) to make the default grid noticable but not blinding
data[DEFAULT_SIZE - 1][x][3] = 255;
data[x][DEFAULT_SIZE - 1][0] =
data[x][DEFAULT_SIZE - 1][1] =
data[x][DEFAULT_SIZE - 1][2] = 0; //----(SA) to make the default grid noticable but not blinding
data[x][DEFAULT_SIZE - 1][3] = 255;
}
tr.defaultImage = R_CreateImage( "*default", (byte *)data, DEFAULT_SIZE, DEFAULT_SIZE, qtrue, qfalse, GL_REPEAT );
}
/*
==================
R_CreateBuiltinImages
==================
*/
void R_CreateBuiltinImages( void ) {
int x,y;
byte data[DEFAULT_SIZE][DEFAULT_SIZE][4];
R_CreateDefaultImage();
// we use a solid white image instead of disabling texturing
memset( data, 255, sizeof( data ) );
tr.whiteImage = R_CreateImage( "*white", (byte *)data, 8, 8, qfalse, qfalse, GL_REPEAT );
// with overbright bits active, we need an image which is some fraction of full color,
// for default lightmaps, etc
for ( x = 0 ; x < DEFAULT_SIZE ; x++ ) {
for ( y = 0 ; y < DEFAULT_SIZE ; y++ ) {
data[y][x][0] =
data[y][x][1] =
data[y][x][2] = tr.identityLightByte;
data[y][x][3] = 255;
}
}
tr.identityLightImage = R_CreateImage( "*identityLight", (byte *)data, 8, 8, qfalse, qfalse, GL_REPEAT );
for ( x = 0; x < 32; x++ ) {
// scratchimage is usually used for cinematic drawing
tr.scratchImage[x] = R_CreateImage( "*scratch", (byte *)data, DEFAULT_SIZE, DEFAULT_SIZE, qfalse, qtrue, GL_CLAMP );
}
R_CreateDlightImage();
R_CreateFogImage();
}
/*
===============
R_SetColorMappings
===============
*/
void R_SetColorMappings( void ) {
int i, j;
float g;
int inf;
int shift;
// setup the overbright lighting
tr.overbrightBits = r_overBrightBits->integer;
if ( !glConfig.deviceSupportsGamma ) {
tr.overbrightBits = 0; // need hardware gamma for overbright
}
// never overbright in windowed mode
if ( !glConfig.isFullscreen ) {
tr.overbrightBits = 0;
}
// allow 2 overbright bits in 24 bit, but only 1 in 16 bit
if ( glConfig.colorBits > 16 ) {
if ( tr.overbrightBits > 2 ) {
tr.overbrightBits = 2;
}
} else {
if ( tr.overbrightBits > 1 ) {
tr.overbrightBits = 1;
}
}
if ( tr.overbrightBits < 0 ) {
tr.overbrightBits = 0;
}
tr.identityLight = 1.0f / ( 1 << tr.overbrightBits );
tr.identityLightByte = 255 * tr.identityLight;
if ( r_intensity->value <= 1 ) {
ri.Cvar_Set( "r_intensity", "1" );
}
if ( r_gamma->value < 0.5f ) {
ri.Cvar_Set( "r_gamma", "0.5" );
} else if ( r_gamma->value > 3.0f ) {
ri.Cvar_Set( "r_gamma", "3.0" );
}
g = r_gamma->value;
shift = tr.overbrightBits;
for ( i = 0; i < 256; i++ ) {
if ( g == 1 ) {
inf = i;
} else {
inf = 255 * pow( i / 255.0f, 1.0f / g ) + 0.5f;
}
inf <<= shift;
if ( inf < 0 ) {
inf = 0;
}
if ( inf > 255 ) {
inf = 255;
}
s_gammatable[i] = inf;
}
for ( i = 0 ; i < 256 ; i++ ) {
j = i * r_intensity->value;
if ( j > 255 ) {
j = 255;
}
s_intensitytable[i] = j;
}
if ( glConfig.deviceSupportsGamma ) {
GLimp_SetGamma( s_gammatable, s_gammatable, s_gammatable );
}
}
/*
===============
R_InitImages
===============
*/
void R_InitImages( void ) {
memset( hashTable, 0, sizeof( hashTable ) );
// Ridah, caching system
R_InitTexnumImages( qfalse );
// done.
// build brightness translation tables
R_SetColorMappings();
// create default texture and white texture
R_CreateBuiltinImages();
// Ridah, load the cache media, if they were loaded previously, they'll be restored from the backupImages
R_LoadCacheImages();
// done.
}
/*
===============
R_DeleteTextures
===============
*/
void R_DeleteTextures( void ) {
int i;
for ( i = 0; i < tr.numImages ; i++ ) {
qglDeleteTextures( 1, &tr.images[i]->texnum );
}
memset( tr.images, 0, sizeof( tr.images ) );
// Ridah
R_InitTexnumImages( qtrue );
// done.
memset( glState.currenttextures, 0, sizeof( glState.currenttextures ) );
if ( qglBindTexture ) {
if ( qglActiveTextureARB ) {
GL_SelectTexture( 1 );
qglBindTexture( GL_TEXTURE_2D, 0 );
GL_SelectTexture( 0 );
qglBindTexture( GL_TEXTURE_2D, 0 );
} else {
qglBindTexture( GL_TEXTURE_2D, 0 );
}
}
}
/*
============================================================================
SKINS
============================================================================
*/
/*
==================
CommaParse
This is unfortunate, but the skin files aren't
compatable with our normal parsing rules.
==================
*/
static char *CommaParse( char **data_p ) {
int c = 0, len;
char *data;
static char com_token[MAX_TOKEN_CHARS];
data = *data_p;
len = 0;
com_token[0] = 0;
// make sure incoming data is valid
if ( !data ) {
*data_p = NULL;
return com_token;
}
while ( 1 ) {
// skip whitespace
while ( ( c = *data ) <= ' ' ) {
if ( !c ) {
break;
}
data++;
}
c = *data;
// skip double slash comments
if ( c == '/' && data[1] == '/' ) {
while ( *data && *data != '\n' )
data++;
}
// skip /* */ comments
else if ( c == '/' && data[1] == '*' ) {
while ( *data && ( *data != '*' || data[1] != '/' ) )
{
data++;
}
if ( *data ) {
data += 2;
}
} else
{
break;
}
}
if ( c == 0 ) {
return "";
}
// handle quoted strings
if ( c == '\"' ) {
data++;
while ( 1 )
{
c = *data++;
if ( c == '\"' || !c ) {
com_token[len] = 0;
*data_p = ( char * ) data;
return com_token;
}
if ( len < MAX_TOKEN_CHARS ) {
com_token[len] = c;
len++;
}
}
}
// parse a regular word
do
{
if ( len < MAX_TOKEN_CHARS ) {
com_token[len] = c;
len++;
}
data++;
c = *data;
} while ( c > 32 && c != ',' );
if ( len == MAX_TOKEN_CHARS ) {
// Com_Printf ("Token exceeded %i chars, discarded.\n", MAX_TOKEN_CHARS);
len = 0;
}
com_token[len] = 0;
*data_p = ( char * ) data;
return com_token;
}
//----(SA) added so client can see what model or scale for the model was specified in a skin
/*
==============
RE_GetSkinModel
==============
*/
qboolean RE_GetSkinModel( qhandle_t skinid, const char *type, char *name ) {
int i;
skin_t *bar;
bar = tr.skins[skinid];
if ( !Q_stricmp( type, "playerscale" ) ) { // client is requesting scale from the skin rather than a model
Com_sprintf( name, MAX_QPATH, "%.2f %.2f %.2f", bar->scale[0], bar->scale[1], bar->scale[2] );
return qtrue;
}
for ( i = 0; i < bar->numModels; i++ )
{
if ( !Q_stricmp( bar->models[i]->type, type ) ) { // (SA) whoops, should've been this way
Q_strncpyz( name, bar->models[i]->model, sizeof( bar->models[i]->model ) );
return qtrue;
}
}
return qfalse;
}
/*
==============
RE_GetShaderFromModel
return a shader index for a given model's surface
'withlightmap' set to '0' will create a new shader that is a copy of the one found
on the model, without the lighmap stage, if the shader has a lightmap stage
NOTE: only works for bmodels right now. Could modify for other models (md3's etc.)
==============
*/
qhandle_t RE_GetShaderFromModel( qhandle_t modelid, int surfnum, int withlightmap ) {
model_t *model;
bmodel_t *bmodel;
msurface_t *surf;
shader_t *shd;
if ( surfnum < 0 ) {
surfnum = 0;
}
model = R_GetModelByHandle( modelid ); // (SA) should be correct now
if ( model ) {
bmodel = model->bmodel;
if ( bmodel && bmodel->firstSurface ) {
if ( surfnum >= bmodel->numSurfaces ) { // if it's out of range, return the first surface
surfnum = 0;
}
surf = bmodel->firstSurface + surfnum;
// if(surf->shader->lightmapIndex != LIGHTMAP_NONE) {
if ( surf->shader->lightmapIndex > LIGHTMAP_NONE ) {
image_t *image;
long hash;
qboolean mip = qtrue; // mip generation on by default
// get mipmap info for original texture
hash = generateHashValue( surf->shader->name );
for ( image = hashTable[hash]; image; image = image->next ) {
if ( !strcmp( surf->shader->name, image->imgName ) ) {
mip = image->mipmap;
break;
}
}
shd = R_FindShader( surf->shader->name, LIGHTMAP_NONE, mip );
shd->stages[0]->rgbGen = CGEN_LIGHTING_DIFFUSE; // (SA) new
} else {
shd = surf->shader;
}
return shd->index;
}
}
return 0;
}
//----(SA) end
/*
===============
RE_RegisterSkin
===============
*/
qhandle_t RE_RegisterSkin( const char *name ) {
qhandle_t hSkin;
skin_t *skin;
skinSurface_t *surf;
skinModel_t *model; //----(SA) added
char *text, *text_p;
char *token;
char surfName[MAX_QPATH];
if ( !name || !name[0] ) {
Com_Printf( "Empty name passed to RE_RegisterSkin\n" );
return 0;
}
if ( strlen( name ) >= MAX_QPATH ) {
Com_Printf( "Skin name exceeds MAX_QPATH\n" );
return 0;
}
// see if the skin is already loaded
for ( hSkin = 1; hSkin < tr.numSkins ; hSkin++ ) {
skin = tr.skins[hSkin];
if ( !Q_stricmp( skin->name, name ) ) {
if ( skin->numSurfaces == 0 ) {
return 0; // default skin
}
return hSkin;
}
}
// allocate a new skin
if ( tr.numSkins == MAX_SKINS ) {
ri.Printf( PRINT_WARNING, "WARNING: RE_RegisterSkin( '%s' ) MAX_SKINS hit\n", name );
return 0;
}
//----(SA) moved things around slightly to fix the problem where you restart
// a map that has ai characters who had invalid skin names entered
// in thier "skin" or "head" field
// make sure the render thread is stopped
R_SyncRenderThread();
// If not a .skin file, load as a single shader
if ( strcmp( name + strlen( name ) - 5, ".skin" ) ) {
tr.numSkins++;
skin = ri.Hunk_Alloc( sizeof( skin_t ), h_low );
tr.skins[hSkin] = skin;
Q_strncpyz( skin->name, name, sizeof( skin->name ) );
skin->numSurfaces = 0;
skin->numModels = 0; //----(SA) added
skin->numSurfaces = 1;
skin->surfaces[0] = ri.Hunk_Alloc( sizeof( skin->surfaces[0] ), h_low );
skin->surfaces[0]->shader = R_FindShader( name, LIGHTMAP_NONE, qtrue );
return hSkin;
}
// load and parse the skin file
ri.FS_ReadFile( name, (void **)&text );
if ( !text ) {
return 0;
}
tr.numSkins++;
skin = ri.Hunk_Alloc( sizeof( skin_t ), h_low );
tr.skins[hSkin] = skin;
Q_strncpyz( skin->name, name, sizeof( skin->name ) );
skin->numSurfaces = 0;
skin->numModels = 0; //----(SA) added
//----(SA) end
text_p = text;
while ( text_p && *text_p ) {
// get surface name
token = CommaParse( &text_p );
Q_strncpyz( surfName, token, sizeof( surfName ) );
if ( !token[0] ) {
break;
}
// lowercase the surface name so skin compares are faster
Q_strlwr( surfName );
if ( *text_p == ',' ) {
text_p++;
}
if ( strstr( token, "tag_" ) ) {
continue;
}
if ( strstr( token, "md3_" ) ) { // this is specifying a model
model = skin->models[ skin->numModels ] = ri.Hunk_Alloc( sizeof( *skin->models[0] ), h_low );
Q_strncpyz( model->type, token, sizeof( model->type ) );
// get the model name
token = CommaParse( &text_p );
Q_strncpyz( model->model, token, sizeof( model->model ) );
skin->numModels++;
continue;
}
//----(SA) added
if ( strstr( token, "playerscale" ) ) {
token = CommaParse( &text_p );
skin->scale[0] = atof( token ); // uniform scaling for now
skin->scale[1] = atof( token );
skin->scale[2] = atof( token );
continue;
}
//----(SA) end
// parse the shader name
token = CommaParse( &text_p );
surf = skin->surfaces[ skin->numSurfaces ] = ri.Hunk_Alloc( sizeof( *skin->surfaces[0] ), h_low );
Q_strncpyz( surf->name, surfName, sizeof( surf->name ) );
surf->shader = R_FindShader( token, LIGHTMAP_NONE, qtrue );
skin->numSurfaces++;
}
ri.FS_FreeFile( text );
// never let a skin have 0 shaders
//----(SA) allow this for the (current) special case of the loper's upper body
// (it's upper body has no surfaces, only tags)
if ( skin->numSurfaces == 0 ) {
if ( !( strstr( name, "loper" ) && strstr( name, "upper" ) ) ) {
return 0; // use default skin
}
}
return hSkin;
}
/*
===============
R_InitSkins
===============
*/
void R_InitSkins( void ) {
skin_t *skin;
tr.numSkins = 1;
// make the default skin have all default shaders
skin = tr.skins[0] = ri.Hunk_Alloc( sizeof( skin_t ), h_low );
Q_strncpyz( skin->name, "", sizeof( skin->name ) );
skin->numSurfaces = 1;
skin->surfaces[0] = ri.Hunk_Alloc( sizeof( *skin->surfaces ), h_low );
skin->surfaces[0]->shader = tr.defaultShader;
}
/*
===============
R_GetSkinByHandle
===============
*/
skin_t *R_GetSkinByHandle( qhandle_t hSkin ) {
if ( hSkin < 1 || hSkin >= tr.numSkins ) {
return tr.skins[0];
}
return tr.skins[ hSkin ];
}
/*
===============
R_SkinList_f
===============
*/
void R_SkinList_f( void ) {
int i, j;
skin_t *skin;
ri.Printf( PRINT_ALL, "------------------\n" );
for ( i = 0 ; i < tr.numSkins ; i++ ) {
skin = tr.skins[i];
ri.Printf( PRINT_ALL, "%3i:%s\n", i, skin->name );
for ( j = 0 ; j < skin->numSurfaces ; j++ ) {
ri.Printf( PRINT_ALL, " %s = %s\n",
skin->surfaces[j]->name, skin->surfaces[j]->shader->name );
}
}
ri.Printf( PRINT_ALL, "------------------\n" );
}
// Ridah, utility for automatically cropping and numbering a bunch of images in a directory
/*
=============
SaveTGA
saves out to 24 bit uncompressed format (no alpha)
=============
*/
void SaveTGA( char *name, byte **pic, int width, int height ) {
byte *inpixel, *outpixel;
byte *outbuf, *b;
outbuf = ri.Hunk_AllocateTempMemory( width * height * 4 + 18 );
b = outbuf;
memset( b, 0, 18 );
b[2] = 2; // uncompressed type
b[12] = width & 255;
b[13] = width >> 8;
b[14] = height & 255;
b[15] = height >> 8;
b[16] = 24; // pixel size
{
int row, col;
int rows, cols;
rows = ( height );
cols = ( width );
outpixel = b + 18;
for ( row = ( rows - 1 ); row >= 0; row-- )
{
inpixel = ( ( *pic ) + ( row * cols ) * 4 );
for ( col = 0; col < cols; col++ )
{
*outpixel++ = *( inpixel + 2 ); // blue
*outpixel++ = *( inpixel + 1 ); // green
*outpixel++ = *( inpixel + 0 ); // red
//*outpixel++ = *(inpixel + 3); // alpha
inpixel += 4;
}
}
}
ri.FS_WriteFile( name, outbuf, (int)( outpixel - outbuf ) );
ri.Hunk_FreeTempMemory( outbuf );
}
/*
=============
SaveTGAAlpha
saves out to 32 bit uncompressed format (with alpha)
=============
*/
void SaveTGAAlpha( char *name, byte **pic, int width, int height ) {
byte *inpixel, *outpixel;
byte *outbuf, *b;
outbuf = ri.Hunk_AllocateTempMemory( width * height * 4 + 18 );
b = outbuf;
memset( b, 0, 18 );
b[2] = 2; // uncompressed type
b[12] = width & 255;
b[13] = width >> 8;
b[14] = height & 255;
b[15] = height >> 8;
b[16] = 32; // pixel size
{
int row, col;
int rows, cols;
rows = ( height );
cols = ( width );
outpixel = b + 18;
for ( row = ( rows - 1 ); row >= 0; row-- )
{
inpixel = ( ( *pic ) + ( row * cols ) * 4 );
for ( col = 0; col < cols; col++ )
{
*outpixel++ = *( inpixel + 2 ); // blue
*outpixel++ = *( inpixel + 1 ); // green
*outpixel++ = *( inpixel + 0 ); // red
*outpixel++ = *( inpixel + 3 ); // alpha
inpixel += 4;
}
}
}
ri.FS_WriteFile( name, outbuf, (int)( outpixel - outbuf ) );
ri.Hunk_FreeTempMemory( outbuf );
}
/*
==============
R_CropImage
==============
*/
#define CROPIMAGES_ENABLED
//#define FUNNEL_HACK
#define RESIZE
//#define QUICKTIME_BANNER
#define TWILTB2_HACK
qboolean R_CropImage( char *name, byte **pic, int border, int *width, int *height, int lastBox[2] ) {
#ifdef CROPIMAGES_ENABLED
int row, col;
int rows, cols;
byte *inpixel, *temppic, *outpixel;
int mins[2], maxs[2];
int diff[2];
//int newWidth;
int /*a, max,*/ i;
int alpha;
//int *center;
qboolean /*invalid,*/ skip;
vec3_t fCol, fScale;
qboolean filterColors = qfalse;
int fCount;
float f,c;
#define FADE_BORDER_RANGE ( ( *width ) / 40 )
rows = ( *height );
cols = ( *width );
mins[0] = 99999;
mins[1] = 99999;
maxs[0] = -99999;
maxs[1] = -99999;
#ifdef TWILTB2_HACK
// find the filter color (use first few pixels)
filterColors = qtrue;
inpixel = ( *pic );
VectorClear( fCol );
for ( fCount = 0; fCount < 8; fCount++, inpixel += 4 ) {
for ( i = 0; i < 3; i++ ) {
if ( *( inpixel + i ) > 70 ) {
continue; // too bright, cant be noise
}
if ( fCol[i] < *( inpixel + i ) ) {
fCol[i] = *( inpixel + i );
}
}
}
//VectorScale( fCol, 1.0/fCount, fCol );
for ( i = 0; i < 3; i++ ) {
fCol[i] += 4;
fScale[i] = 255.0 / ( 255.0 - fCol[i] );
}
#endif
for ( row = 0; row < rows; row++ )
{
inpixel = ( ( *pic ) + ( row * cols ) * 4 );
for ( col = 0; col < cols; col++, inpixel += 4 )
{
if ( filterColors ) {
// special code for filtering the twiltb series
for ( i = 0; i < 3; i++ ) {
f = *( inpixel + i );
f -= fCol[i];
if ( f <= 0 ) {
f = 0;
} else { f *= fScale[i];}
if ( f > 255 ) {
f = 255;
}
*( inpixel + i ) = f;
}
// if this pixel is near the edge, then fade it out (just do a brightness fade)
if ( (int *)inpixel ) {
// calc the fade scale
f = (float)row / FADE_BORDER_RANGE;
if ( f > (float)( rows - row - 1 ) / FADE_BORDER_RANGE ) {
f = (float)( rows - row - 1 ) / FADE_BORDER_RANGE;
}
if ( f > (float)( cols - col - 1 ) / FADE_BORDER_RANGE ) {
f = (float)( cols - col - 1 ) / FADE_BORDER_RANGE;
}
if ( f > (float)( col ) / FADE_BORDER_RANGE ) {
f = (float)( col ) / FADE_BORDER_RANGE;
}
if ( f < 1.0 ) {
if ( f <= 0 ) {
*( (int *)inpixel ) = 0;
} else {
f += 0.2 * crandom();
if ( f < 1.0 ) {
if ( f <= 0 ) {
*( (int *)inpixel ) = 0;
} else {
f = 1.0 - f;
for ( i = 0; i < 3; i++ ) {
c = *( inpixel + i );
c -= f * c;
if ( c < 0 ) {
c = 0;
}
*( inpixel + i ) = c;
}
}
}
}
}
}
continue;
}
skip = qfalse;
#ifdef QUICKTIME_BANNER
// hack for quicktime ripped images
if ( ( col > cols - 3 || row > rows - 36 ) ) {
// filter this pixel out
*( inpixel + 0 ) = 0;
*( inpixel + 1 ) = 0;
*( inpixel + 2 ) = 0;
skip = qtrue;
}
#endif
if ( !skip ) {
if ( ( *( inpixel + 0 ) > 20 ) // blue
|| ( *( inpixel + 1 ) > 20 ) // green
|| ( *( inpixel + 2 ) > 20 ) ) { // red
if ( col < mins[0] ) {
mins[0] = col;
}
if ( col > maxs[0] ) {
maxs[0] = col;
}
if ( row < mins[1] ) {
mins[1] = row;
}
if ( row > maxs[1] ) {
maxs[1] = row;
}
} else {
// filter this pixel out
*( inpixel + 0 ) = 0;
*( inpixel + 1 ) = 0;
*( inpixel + 2 ) = 0;
}
}
#ifdef FUNNEL_HACK // scale brightness down
for ( i = 0; i < 3; i++ ) {
alpha = *( inpixel + i );
if ( ( alpha -= 20 ) < 0 ) {
alpha = 0;
}
*( inpixel + i ) = alpha;
}
#endif
// set the alpha component
alpha = *( inpixel + 0 ); // + *(inpixel + 1) + *(inpixel + 2);
if ( *( inpixel + 1 ) > alpha ) {
alpha = *( inpixel + 1 );
}
if ( *( inpixel + 2 ) > alpha ) {
alpha = *( inpixel + 2 );
}
//alpha = (int)((float)alpha / 3.0);
//alpha /= 3;
if ( alpha > 255 ) {
alpha = 255;
}
*( inpixel + 3 ) = (byte)alpha;
}
}
#ifdef RESIZE
return qtrue;
#endif
// convert it so that the center is the center of the image
// this is used for some explosions
/*
for (i=0; i<2; i++) {
if (i==0) center = width;
else center = height;
if ((*center/2 - mins[i]) > (maxs[i] - *center/2)) {
maxs[i] = *center/2 + (*center/2 - mins[i]);
} else {
mins[i] = *center/2 - (maxs[i] - *center/2);
}
}
*/
// HACK for funnel
#ifdef FUNNEL_HACK
mins[0] = 210;
maxs[0] = 430;
mins[1] = 0;
maxs[1] = *height - 1;
for ( i = 0; i < 2; i++ ) {
diff[i] = maxs[i] - mins[i];
}
#else
#ifndef RESIZE
// apply the border
for ( i = 0; i < 2; i++ ) {
mins[i] -= border;
if ( mins[i] < 0 ) {
mins[i] = 0;
}
maxs[i] += border;
if ( i == 0 ) {
if ( maxs[i] > *width - 1 ) {
maxs[i] = *width - 1;
}
} else {
if ( maxs[i] > *height - 1 ) {
maxs[i] = *height - 1;
}
}
}
// we have the mins/maxs, so work out the best square to crop to
for ( i = 0; i < 2; i++ ) {
diff[i] = maxs[i] - mins[i];
}
// widen the axis that has the smallest diff
a = -1;
if ( diff[1] > diff[0] ) {
a = 0;
max = *width - 1;
} else if ( diff[0] > diff[1] ) {
a = 1;
max = *height - 1;
}
if ( a >= 0 ) {
invalid = qfalse;
while ( diff[a] < diff[!a] ) {
if ( invalid ) {
Com_Printf( "unable to find a good crop size\n" );
return qfalse;
}
invalid = qtrue;
if ( mins[a] > 0 ) {
mins[a] -= 1;
diff[a] = maxs[a] - mins[a];
invalid = qfalse;
}
if ( ( diff[a] < diff[!a] ) && ( maxs[a] < max ) ) {
maxs[a] += 1;
diff[a] = maxs[a] - mins[a];
invalid = qfalse;
}
}
}
// make sure it's bigger or equal to the last one
for ( i = 0; i < 2; i++ ) {
if ( ( maxs[i] - mins[i] ) < lastBox[i] ) {
if ( i == 0 ) {
center = width;
} else { center = height;}
maxs[i] = *center / 2 + ( lastBox[i] / 2 );
mins[i] = maxs[i] - lastBox[i];
diff[i] = lastBox[i];
}
}
#else
for ( i = 0; i < 2; i++ ) {
diff[i] = maxs[i] - mins[i];
lastBox[i] = diff[i];
}
#endif // RESIZE
#endif // FUNNEL_HACK
temppic = ri.Z_Malloc( sizeof( unsigned int ) * diff[0] * diff[1] );
outpixel = temppic;
for ( row = mins[1]; row < maxs[1]; row++ )
{
inpixel = ( ( *pic ) + ( row * cols ) * 4 );
inpixel += mins[0] * 4;
for ( col = mins[0]; col < maxs[0]; col++ )
{
*outpixel++ = *( inpixel + 0 ); // blue
*outpixel++ = *( inpixel + 1 ); // green
*outpixel++ = *( inpixel + 2 ); // red
*outpixel++ = *( inpixel + 3 ); // alpha
inpixel += 4;
}
}
// for some reason this causes memory drop, not worth investigating (dev command only)
//ri.Free( *pic );
*pic = temppic;
*width = diff[0];
*height = diff[1];
return qtrue;
#else
return qtrue; // shutup the compiler
#endif
}
/*
===============
R_CropAndNumberImagesInDirectory
===============
*/
void R_CropAndNumberImagesInDirectory( char *dir, char *ext, int maxWidth, int maxHeight, int withAlpha ) {
#ifdef CROPIMAGES_ENABLED
char **fileList;
int numFiles, j;
#ifndef RESIZE
int i;
#endif
byte *pic, *temppic;
int width, height, newWidth, newHeight;
char *pch;
int b,c,d,lastNumber;
int lastBox[2] = {0,0};
fileList = ri.FS_ListFiles( dir, ext, &numFiles );
if ( !numFiles ) {
ri.Printf( PRINT_ALL, "no '%s' files in directory '%s'\n", ext, dir );
return;
}
ri.Printf( PRINT_ALL, "%i files found, beginning processing..\n", numFiles );
for ( j = 0; j < numFiles; j++ ) {
char filename[MAX_QPATH], outfilename[MAX_QPATH];
if ( !Q_strncmp( fileList[j], "spr", 3 ) ) {
continue;
}
Com_sprintf( filename, sizeof( filename ), "%s/%s", dir, fileList[j] );
ri.Printf( PRINT_ALL, "...cropping '%s'.. ", filename );
R_LoadImage( filename, &pic, &width, &height );
if ( !pic ) {
ri.Printf( PRINT_ALL, "error reading file, ignoring.\n" );
continue;
}
// file has been read, crop it, resize it down to a power of 2, then save
if ( !R_CropImage( filename, &pic, 6, &width, &height, lastBox ) ) {
ri.Printf( PRINT_ALL, "unable to crop image.\n" );
//ri.Free( pic );
break;
}
#ifndef RESIZE
for ( i = 2; ( 1 << i ) <= maxWidth; i++ ) {
if ( ( width < ( 1 << i ) ) && ( width > ( 1 << ( i - 1 ) ) ) ) {
newWidth = ( 1 << ( i - 1 ) );
if ( newWidth > maxWidth ) {
newWidth = maxWidth;
}
newHeight = newWidth;
temppic = ri.Z_Malloc( sizeof( unsigned int ) * newWidth * newHeight );
ResampleTexture( (unsigned int *)pic, width, height, (unsigned int *)temppic, newWidth, newHeight );
memcpy( pic, temppic, sizeof( unsigned int ) * newWidth * newHeight );
ri.Free( temppic );
width = height = newWidth;
break;
}
}
if ( width > maxWidth ) {
// we need to force the scale downwards
newWidth = maxWidth;
newHeight = maxWidth;
temppic = ri.Z_Malloc( sizeof( unsigned int ) * newWidth * newHeight );
ResampleTexture( (unsigned int *)pic, width, height, (unsigned int *)temppic, newWidth, newHeight );
memcpy( pic, temppic, sizeof( unsigned int ) * newWidth * newHeight );
ri.Free( temppic );
width = newWidth;
height = newHeight;
}
#else
newWidth = maxWidth;
newHeight = maxHeight;
temppic = ri.Z_Malloc( sizeof( unsigned int ) * newWidth * newHeight );
ResampleTexture( (unsigned int *)pic, width, height, (unsigned int *)temppic, newWidth, newHeight );
memcpy( pic, temppic, sizeof( unsigned int ) * newWidth * newHeight );
ri.Free( temppic );
width = newWidth;
height = newHeight;
#endif
// set the new filename
pch = strrchr( filename, '/' );
*pch = '\0';
lastNumber = j;
b = lastNumber / 100;
lastNumber -= b * 100;
c = lastNumber / 10;
lastNumber -= c * 10;
d = lastNumber;
Com_sprintf( outfilename, sizeof( outfilename ), "%s/spr%i%i%i.tga", filename, b, c, d );
if ( withAlpha ) {
SaveTGAAlpha( outfilename, &pic, width, height );
} else {
SaveTGA( outfilename, &pic, width, height );
}
// free the pixel data
//ri.Free( pic );
ri.Printf( PRINT_ALL, "done.\n" );
}
#endif
}
/*
==============
R_CropImages_f
==============
*/
void R_CropImages_f( void ) {
#ifdef CROPIMAGES_ENABLED
if ( ri.Cmd_Argc() < 5 ) {
ri.Printf( PRINT_ALL, "syntax: cropimages \neg: 'cropimages sprites/fire1 .tga 64 64 0'\n" );
return;
}
R_CropAndNumberImagesInDirectory( ri.Cmd_Argv( 1 ), ri.Cmd_Argv( 2 ), atoi( ri.Cmd_Argv( 3 ) ), atoi( ri.Cmd_Argv( 4 ) ), atoi( ri.Cmd_Argv( 5 ) ) );
#else
ri.Printf( PRINT_ALL, "This command has been disabled.\n" );
#endif
}
// done.
//==========================================================================================
// Ridah, caching system
static int numBackupImages = 0;
static image_t *backupHashTable[FILE_HASH_SIZE];
static image_t *texnumImages[MAX_DRAWIMAGES * 2];
/*
===============
R_CacheImageAlloc
this will only get called to allocate the image_t structures, not that actual image pixels
===============
*/
void *R_CacheImageAlloc( int size ) {
if ( r_cache->integer && r_cacheShaders->integer ) {
return malloc( size );
//DAJ TEST return ri.Z_Malloc( size ); //DAJ was CO
} else {
return ri.Hunk_Alloc( size, h_low );
}
}
/*
===============
R_CacheImageFree
===============
*/
void R_CacheImageFree( void *ptr ) {
if ( r_cache->integer && r_cacheShaders->integer ) {
free( ptr );
//DAJ TEST ri.Free( ptr ); //DAJ was CO
}
}
/*
===============
R_TouchImage
remove this image from the backupHashTable and make sure it doesn't get overwritten
===============
*/
qboolean R_TouchImage( image_t *inImage ) {
image_t *bImage, *bImagePrev;
int hash;
char *name;
if ( inImage == tr.dlightImage ||
inImage == tr.whiteImage ||
inImage == tr.defaultImage ||
inImage->imgName[0] == '*' ) { // can't use lightmaps since they might have the same name, but different maps will have different actual lightmap pixels
return qfalse;
}
hash = inImage->hash;
name = inImage->imgName;
bImage = backupHashTable[hash];
bImagePrev = NULL;
while ( bImage ) {
if ( bImage == inImage ) {
// add it to the current images
if ( tr.numImages == MAX_DRAWIMAGES ) {
ri.Error( ERR_DROP, "R_CreateImage: MAX_DRAWIMAGES hit\n" );
}
tr.images[tr.numImages] = bImage;
// remove it from the backupHashTable
if ( bImagePrev ) {
bImagePrev->next = bImage->next;
} else {
backupHashTable[hash] = bImage->next;
}
// add it to the hashTable
bImage->next = hashTable[hash];
hashTable[hash] = bImage;
// get the new texture
tr.numImages++;
return qtrue;
}
bImagePrev = bImage;
bImage = bImage->next;
}
return qtrue;
}
/*
===============
R_PurgeImage
===============
*/
void R_PurgeImage( image_t *image ) {
texnumImages[image->texnum - 1024] = NULL;
qglDeleteTextures( 1, &image->texnum );
R_CacheImageFree( image );
memset( glState.currenttextures, 0, sizeof( glState.currenttextures ) );
if ( qglBindTexture ) {
if ( qglActiveTextureARB ) {
GL_SelectTexture( 1 );
qglBindTexture( GL_TEXTURE_2D, 0 );
GL_SelectTexture( 0 );
qglBindTexture( GL_TEXTURE_2D, 0 );
} else {
qglBindTexture( GL_TEXTURE_2D, 0 );
}
}
}
/*
===============
R_PurgeBackupImages
Can specify the number of Images to purge this call (used for background purging)
===============
*/
void R_PurgeBackupImages( int purgeCount ) {
int i, cnt;
static int lastPurged = 0;
image_t *image;
if ( !numBackupImages ) {
// nothing to purge
lastPurged = 0;
return;
}
R_SyncRenderThread();
cnt = 0;
for ( i = lastPurged; i < FILE_HASH_SIZE; ) {
lastPurged = i;
// TTimo: assignment used as truth value
if ( ( image = backupHashTable[i] ) ) {
// kill it
backupHashTable[i] = image->next;
R_PurgeImage( image );
cnt++;
if ( cnt >= purgeCount ) {
return;
}
} else {
i++; // no images in this slot, so move to the next one
}
}
// all done
numBackupImages = 0;
lastPurged = 0;
}
/*
===============
R_BackupImages
===============
*/
void R_BackupImages( void ) {
if ( !r_cache->integer ) {
return;
}
if ( !r_cacheShaders->integer ) {
return;
}
// backup the hashTable
memcpy( backupHashTable, hashTable, sizeof( backupHashTable ) );
// pretend we have cleared the list
numBackupImages = tr.numImages;
tr.numImages = 0;
memset( glState.currenttextures, 0, sizeof( glState.currenttextures ) );
if ( qglBindTexture ) {
if ( qglActiveTextureARB ) {
GL_SelectTexture( 1 );
qglBindTexture( GL_TEXTURE_2D, 0 );
GL_SelectTexture( 0 );
qglBindTexture( GL_TEXTURE_2D, 0 );
} else {
qglBindTexture( GL_TEXTURE_2D, 0 );
}
}
}
/*
=============
R_FindCachedImage
=============
*/
image_t *R_FindCachedImage( const char *name, int hash ) {
image_t *bImage, *bImagePrev;
if ( !r_cacheShaders->integer ) {
return NULL;
}
if ( !numBackupImages ) {
return NULL;
}
bImage = backupHashTable[hash];
bImagePrev = NULL;
while ( bImage ) {
if ( !Q_stricmp( name, bImage->imgName ) ) {
// add it to the current images
if ( tr.numImages == MAX_DRAWIMAGES ) {
ri.Error( ERR_DROP, "R_CreateImage: MAX_DRAWIMAGES hit\n" );
}
R_TouchImage( bImage );
return bImage;
}
bImagePrev = bImage;
bImage = bImage->next;
}
return NULL;
}
/*
===============
R_InitTexnumImages
===============
*/
static int last_i;
void R_InitTexnumImages( qboolean force ) {
if ( force || !numBackupImages ) {
memset( texnumImages, 0, sizeof( texnumImages ) );
last_i = 0;
}
}
/*
============
R_FindFreeTexnum
============
*/
void R_FindFreeTexnum( image_t *inImage ) {
int i, max;
image_t **image;
max = ( MAX_DRAWIMAGES * 2 );
if ( last_i && !texnumImages[last_i + 1] ) {
i = last_i + 1;
} else {
i = 0;
image = (image_t **)&texnumImages;
while ( i < max && *( image++ ) ) {
i++;
}
}
if ( i < max ) {
if ( i < max - 1 ) {
last_i = i;
} else {
last_i = 0;
}
inImage->texnum = 1024 + i;
texnumImages[i] = inImage;
} else {
ri.Error( ERR_DROP, "R_FindFreeTexnum: MAX_DRAWIMAGES hit\n" );
}
}
/*
===============
R_LoadCacheImages
===============
*/
void R_LoadCacheImages( void ) {
int len;
byte *buf;
char *token, *pString;
char name[MAX_QPATH];
int parms[3], i;
if ( numBackupImages ) {
return;
}
len = ri.FS_ReadFile( "image.cache", NULL );
if ( len <= 0 ) {
return;
}
buf = (byte *)ri.Hunk_AllocateTempMemory( len );
ri.FS_ReadFile( "image.cache", (void **)&buf );
pString = buf;
while ( ( token = COM_ParseExt( &pString, qtrue ) ) && token[0] ) {
Q_strncpyz( name, token, sizeof( name ) );
for ( i = 0; i < 3; i++ ) {
token = COM_ParseExt( &pString, qfalse );
parms[i] = atoi( token );
}
R_FindImageFile( name, parms[0], parms[1], parms[2] );
}
ri.Hunk_FreeTempMemory( buf );
}
// done.
//==========================================================================================